HUMANS OF THE U: KEITH DIAZ MOORE

Originally posted on @theU on September 25, 2018.

“When people think of health and well-being, they may think of medicine, pharmacy, nursing—I think of architecture and design. What drove my architectural career was visiting my grandmother with Alzheimer’s disease in a lockdown wing of a nursing home. Architects, designers and planners have a social responsibility to do better, to act with an ethic of care. That has been my driving force.

When others think sustainability, they might think the environment—I think health. This imperative convergence is why we are pursuing and championing renewable energy, like geothermal and solar; active transportation, like bicycling, public transit and subscription ride service; and lifestyle practices, such as healthy foods and zero waste. We need to clean our air, to leave resources for future generations and to make the campus not just sustainable but resilient to future challenges yet unseen.

When others think of higher education and its current challenging context—I think of the amazing opportunities we have to lead. I am a public-school kid from K through Ph.D. and I personally know the powerful transformational force of public higher education. What if the University of Utah envisioned itself as a healthy and resilient campus? One that promotes physical activity, energy independence and overall wellness. One that understands that our community of diverse students, faculty and staff bring their minds, bodies, souls and personal backgrounds to campus. How do we nurture all of those in an inclusive and welcoming setting? This, to me, begins the exciting conversation of the resilient campus of the future.

Every day, no matter where I turn, I see a mountain view challenging all of us to aspire. We are all but part of an amazing ecosystem and much like a mountain, one that is both enduring yet incredibly fragile. How do we, each and every day, play a small role in making this ecosystem a resilient and inclusive one for all?”

—Keith Diaz Moore, Ph.D. AIA, WELL-AP, dean of College of Architecture + Planning and Interim Chief Sustainability Officer

Projecting Nature

By: Nicholas Apodaca, Graduate Assistant, Sustainability Office.

Driving into Salt Lake City from the west, the shady streets and verdant gardens can feel like an oasis at the edge of the desert. Yet the Salt Lake Valley was not always so green. As people settled the valley, they brought new plants to the landscape. Whether for agriculture, aesthetics, or utility, human hands dramatically changed the ecology of the Salt Lake Valley.

For ecologists, the urban environment presents a compelling and pressing issue, as scientific knowledge is complicated by considerations of human values and decision-making. Diane Pataki, professor of Biology and associate dean of research for the College of Science, will explore the complexities of urban ecology in her lecture from 4-5 p.m. on Tuesday, Sept. 25 as part of the GCSC Seminar Series.

Pataki’s faculty appointment is in the School of Biological Sciences, but she also teaches in the Department of City & Metropolitan Planning. Her work is necessarily interdisciplinary—her Urban Ecology Research Lab examines the many ecological factors at play in urban spaces. Through research on climate, water, pollution, aesthetics and other factors affecting the ecology of urban spaces, Pataki’s research provides valuable data that can better inform how and what we plant.

As climate change and resource scarcity become more important issues in our daily lives, many seek to make more informed decisions in their garden. “Most of the vegetation in Salt Lake City is planted by people, so people are always making decisions: what should they plant, and what should they remove?” Pataki says.

However, most research in ecology doesn’t fully account for how human decision-making affects the environment. Pataki notes that we have extensive scientific knowledge about how plants interact with climatic and biological forces but less about the human element. Yet, in studying urban spaces, the decisions humans make are significant, and often have little relevance to the native ecology of the region.

“People plant things for certain reasons and many of those reasons are aesthetic, and not scientific,” explains Pataki, “and that’s perfectly valid. So how do you bring in things like aesthetics into a decision-making framework?”

The picture is further complicated by the fundamental objectivity of scientific research, Pataki explains, because “traditionally, scientists are not supposed to tell people what to do. Science is supposed to be objective, and we’re not supposed to lobby for certain outcomes.” Science seeks to be objective and not prescriptive, and yet studying urban ecology means ultimately making decisions about what is necessary to a place. To different people, different things are important. “We project things onto urban spaces and not all of those things are scientific. We project cultural meaning onto spaces, we project values onto spaces, we want spaces to have a certain interaction with people, and that interaction can be highly subjective.”

As a result of these philosophical questions, Pataki has collaborated with researchers in the Philosophy department. Ultimately, she explains, they are seeking to understand, “How do you do science in a normative context?”

How can research on urban ecology navigate this dissonance between objective research and subjective decision-making? Come to ASB 210 on Tuesday, Sept. 25 to hear Pataki explore this fascinating intersection of urban space, science and philosophy.

 

THE WASATCH FRONT: A LIVING LAB

Originally posted on @theU on September 17, 2018

By Paul Gabrielsen, science writer, University of Utah Communications

University of Utah scientists know how to turn a challenge into an opportunity. Repeatedly, researchers at the U have developed innovative research solutions to some of the Salt Lake Valley’s most serious environmental issues. Light rail trains sample the air as they dart around the valley. Camera traps keep their eyes on the wildlife in mountain canyons. Climate and hydrological observations track rain, snow, plant stress, groundwater and streamflow from the mountain crest to the valley floor.

All of these environmental factors—earth, air, water and life—are interconnected, though. A change in one has the potential to impact any or all of the others. So how do U researchers respond to this extraordinary complexity? By banding together. This fall, the U launches a new university-wide collaboration called the Wasatch Environmental Observatory.

“We’ve talked about campus as a living lab, and faculty have gotten grants to develop research infrastructure throughout the Wasatch Front,” says Brenda Bowen, director of the Global Change and Sustainability Center (GCSC). “We have all this infrastructure and we thought: ‘How can we pull this together in a new way to not just study campus as a living lab, but our home, the whole Wasatch Front?’”

This observatory isn’t a single facility like, say, an astronomical observatory. It’s a network of sensors and instruments, stretched all across the Wasatch Front, that collectively monitor multiple environmental metrics. “We’re pulling together all of the systems that were initially funded by individual researchers or large multi-researcher grants to make it into something more than the sum of its parts,” Bowen says.

Part of the observatory is relatively stationary, providing consistent, long-term data. But part is portable and deployable, Bowen says. “As events occur, we can deploy infrastructure into a certain area by pulling together hydrologic, atmospheric and ecological research facilities into a distributed observatory or field station.”

Paul Brooks, professor of geology and geophysics, says that the observatory is a framework for future projects and infrastructure to be added in. State, federal and local agencies, he says, have already expressed interest in tying their instrumentation into the WEO network. The measurements and results from WEO can then be used by those stakeholder agencies. “That’s one of the exciting areas of WEO,” Brooks says. “It takes the new knowledge generated by students and faculty and ports it through as quickly as possible to people on the ground who use that knowledge to make better decisions.”

For Bowen and the GCSC, which brings together faculty from across campus to study environmental issues, WEO is a fulfillment of the center’s mission. “It’s realizing what GCSC strives to be,” Bowen says. “WEO will help integrate everything we’re doing to advance sustainability in our own backyard.” 

WEO will be led by a committee of six faculty members (including Bowen and Brooks) hailing from the departments of Geology & Geophysics, Atmospheric Sciences, Civil and Environmental Engineering, and the School of Biological Sciences. Beyond that, nearly 40 researchers from 13 different departments and eight colleges already have research or outreach projects associated with WEO.

According to a project summary from GCSC, current facilities to be linked together through WEO include:

  • Distributed hydroclimate, meteorological, biological and hydrological observations in seven catchments spanning the Wasatch Crest through the Great Salt Lake including six closely spaced stations spanning an elevation gradient from the top of Red Butte Creek down through campus and on to the Jordan River
  • Experimental stormwater, landscape, transportation, and architectural design infrastructure on campus
  • Long-term ecological, geological, and snow study sites
  • Seven atmospheric trace gas and climate stations from Hidden Peak (Snowbird) to the Salt Lake Valley floor
  • Light rail-based atmospheric observations distributed across land use and elevational gradients in the Salt Lake Valley (TRAX)
  • Deployable and relocatable high-precision atmospheric and hydrologic observation equipment
  • Co-Located, long-term, and spatially extensive databases from multiple disciplines

All of that equipment requires service, repair and maintenance. So WEO provides for two full-time research technical specialists, Dave Eiriksson and Ryan Bares, to keep the sensors running.

Brooks says the interconnectedness of the WEO sensor systems allows researchers to study the impacts on one environmental system, say, urban development, on others, such as the quality of water in urban streams.

“The idea is that each individual solution we have exists in a broader context,” Brooks says. “We want to be as comprehensive as possible so that the solution to one issue doesn’t then create a new problem down the line that perhaps we didn’t think of.”

Brooks adds that the U is uniquely positioned, with researchers and facilities, to study environmental issues common throughout the West.

“WEO brings those researchers and resources together,” he says, “so instead of addressing these issues piecemeal we have the ability to address them in concert.”

Want to join in?

If you’re considering or conducting environmental research along the Wasatch Front, come to a think tank mixer presented by GCSC on Sept. 26, from 5-7 p.m. at the College of Law, sixth floor, Flynn Faculty Workshop.

Learn more and register here.

 

The Intersection of Greenhouse Gases and Air Quality

By: Nicholas Apodaca, Graduate Assistant, Sustainability Office.

As Utah residents know well, air quality can have a serious effect on our daily lives. Wildfires, inversions, dust, and pollution colliding with the complex geography of the Salt Lake region all contribute to the thick haze that can settle over the valley. However, the exact conditions and effects of these issues are not yet completely understood.

John Lin, professor of atmospheric sciences here at the University of Utah, will shine some light on these regional air quality problems in his lecture on Tuesday, September 11 in 210 ASB as part of the Global Change & Sustainability Center’s annual seminar series. Lin will lay out some of the complex conditions that affect air quality, and show just how interconnected they are to greenhouse gas emissions and climate change across the West.

He’ll explain how air quality can be indicative of many diverse conditions converging.

Of major concern in Lin’s research on Salt Lake City is dust blown off the Great Salt Lake. As the climate warms and water levels lower more frequently, dust is increasingly exposed to the air and carried into the atmosphere. Salt Lake City’s proximity to the lake leaves it particularly susceptible to the ill effects. This lake dust also effects snow, as it settles on the snowpack and causes it to melt faster.

Wildfires also play a big part in introducing particles to the atmosphere. Smoke from across the West can move hundreds of miles in the atmosphere to Utah. As climate change makes fires more frequent and intense, the relationship between global processes and regional air quality becomes more evident.

This relationship is visible in our daily lives.

“When we drive, the stuff that comes out of our tailpipes includes greenhouse gases but also NOx [Nitrogen Oxide] and PM2.5 which cause air quality problems,.” Lin said.

Often the source of local pollution is the source of emissions that drive climate change. Each contributes to a feedback loop that exacerbates their combined effect.

Lin’s research at the U has begun to uncover and understand the sources of these problems. Through two research groups, LAIR and U-ATAQ, Lin has used extensive data from a complex network of air quality monitoring systems throughout the region. The TRAX Air Quality monitoring system installed four years ago has been a major player in this network. The system has allowed Lin and his colleagues to closely monitor the valley’s air in its most densely-populated areas. Working together with city government, this research is directly informing new air quality initiatives in Salt Lake City. Collaborative work with the University of Utah Medical School is also applying this data to public health research.

The possibilities emerging from an understanding of how air quality and climate change intersect may have positive consequences outside of Utah.

“There’s a fair bit of interest from cities around the West who want to reduce emissions,” said Lin. “The cities are at the forefront, and hopefully the scientists can help in some way. What we hope to do is use our research to help assess if, with new measures in place, the reduction in emissions are actually happening.”

Come to Lin’s seminar, ” “The greenhouse gas-air quality nexus: experiences from the Western U.S.” at 4 p.m. in 210 ASB on Tuesday, September 11 to learn more about this cutting-edge research of the intersection of air quality and climate change, and how it affects us here in Salt Lake City and the West.  

PEDESTRIAN SAFETY

By Ginger Cannon, active transportation manager, University of Utah

The University of Utah is committed to reducing carbon emissions, as well as improving local air quality by reducing impacts from university operations and daily commute trips. Consequently, using sustainable modes of transportation to, from and around campus is supported and encouraged.

The university prioritizes the safety of pedestrians and those riding wheeled devices such as bicycles, skateboards, rollerskates and scooters while traveling on university premises.

To ensure the safety of all on pathways and sidewalks, please remember the following:

  • Every person riding any device must yield the right of way to pedestrians at all times. Report any unsafe behavior or conditions to Campus Police at 801-585-COPS.
  • The campus speed limit for wheeled devices is 10 mph. Always wear a helmet, be aware of your surroundings and ride your device responsibly.
  • Shared mobility devices like bike share and e-scooters are managed by private operators and are used to access the university campus. When renting any shared device, please remember:

The university is working to further define regulations for shared mobility devices on university premises. Shared mobility is an evolving area of transportation services and regulations will change according to Utah state code, Salt Lake City ordinance and direction of university administration.

For emergencies or to report violations of university policy, call 801-585-COPS (2677).

POWER TO THE PEOPLE

Originally published on @theU on August 20, 2018.

By Vince Horiuchi, public relations associate, College of Engineering

Hurricane Maria’s devastation of Puerto Rico last September, which left nearly all the island’s 3.4 million residents without power, is one of the most frightening scenarios for a metropolis: A natural disaster or cyberattack wipes out a city’s power grid.

University of Utah electrical and computer engineering assistant professor Masood Parvania has received a $2 million grant from the Office of Naval Research to build a new laboratory and develop technology that would help communities get their power back online faster in the wake of a natural disaster or cyberattack.
PHOTO CREDIT: Dan Hixson/University of Utah College of Engineering

But University of Utah electrical and computer engineering assistant professor Masood Parvania is building a new laboratory to develop technology that would help communities get their power back online faster in the wake of those kinds of devastating events.

He was awarded a three-year, $2 million grant from the U.S. Navy’s Office of Naval Research beginning July 1 to build the lab and research and test technology for microgrids–smaller, more localized versions of a city’s power grid that could provide backup electricity in a catastrophic situation.

When a natural disaster hits, much of a city’s power grid that receives electricity from sources such as thermal and hydroelectric plants, can go dark.

Microgrids are power systems in smaller areas of a city that operate autonomously from the main grid and get electricity from sources like solar panels or energy storage devices. They can provide emergency power to neighborhoods and essential services such as hospitals until the main system is restored. Microgrids can be as small as a building like a college campus or military base that use backup generators, or a large neighborhood that uses wind turbines or geothermal generation. Microgrids, for example, are now being created all over Puerto Rico in the event of future massive power outages.

Parvania and his team at the Utah Smart Energy Lab (U-Smart) will be developing microgrid controllers that act as the computerized brains of a microgrid and determine how to best distribute electrical power in an area. These controllers will be faster, smarter and more secure from cyberattacks, the newest concern for power companies. Two days before Christmas in 2015, for example, Russian hackers remotely attacked the control centers of three Ukrainian electricity distribution companies, briefly wiping out power to more than 200,000 customers.

“Today, power grids are becoming more and more vulnerable with modernization and digitization,” Parvania says. “These microgrid controllers will be faster and more accurate in returning power back to communities. But we also want to make sure that once they work they are not affected by cyberattacks.”

Parvania’s laboratory, which will be built on the University of Utah’s College of Engineering campus, will consist of software and specialized computers called “real-time digital simulators” that will simulate a power system. New technologies that his team develops can be experimented on this new testbed. The laboratory also will be used to help educate the next generation of power engineers who are studying microgrids.

Another component of the research grant involves commercializing any technology that Parvania’s team develops. The University of Utah is partnering with the Utah Science Technology and Research (USTAR) initiative, Governor’s Office of Energy Development, Idaho National Lab, and the U’s Office of Technology and Venture Commercialization.

“We are also going to work with utilities, energy companies, and military bases to see how we can commercialize our technology for the betterment of communities,” says Parvania.

 

 

 

 

HUMANS OF THE U: CLAIRE TAYLOR

Originally posted on @theU on August 10, 2018

“My artwork is focused on wildlife and ecology. I am inspired by my encounters with wildlife—how I react, what biases come up.

Friends of Red Butte Creek and the Global Change & Sustainability Center awarded me a grant to create art of the wildlife in the Red Butte Creek area and I was able to combine that with my master’s degree project. I spent a year working in the Research Natural Area above Red Butte Garden, and the creek below it.

I wanted to know what the wildlife I encountered thought of me, but there wasn’t a way to do that. So, I paid attention to the emotions and feelings I had and worked to capture that.

One day I came across a snake. I’ve always been afraid of snakes, even non-venomous snakes. This snake’s eyes reminded me of my cat’s eyes. Given this familiarity, I felt affection toward the snake. I considered why I feel differently about a cat versus a snake. Is it the way it looks? The way it moves? It shifted the way I view snakes.

Another time I was working along the edge of the creek in Research Park. To avoid poison ivy, I ended up walking in the creek. I was photographing an insect egg structure when two fawns came down behind me to drink water. They were surprised, very curious and aggressive for fawns. I wondered if I was the first human they had seen, which was bizarre and exciting, and may have informed their odd behavior.

Through this project I considered what it would be like to be another species and challenged my biases toward particular species.”

— Claire Taylor, BFA ’07, M.S. ’16. Claire’s artwork will be featured on the U’s 2018-19 sustainability events calendar.

WATERSHED PROTECTION

Originally posted in @theU on August 27th, 2018

By Cecily Sakrison, U Water Center

Some come to the Natural History Museum of Utah for the world-class dinosaur exhibit, others are drawn to the vast collection of gems and minerals. But if you’re interested in sustainable engineering and infrastructure, you’ve arrived at your destination the moment you park your car.

 

It could be argued that the museum’s newest exhibit is its “50-year parking lot”—an engineering feat that’s “almost unheard of in Utah,” said David B. Alter, vice president of Ensign Engineering and project manager for the lot upgrade. With the pressures of ice, snow, salt and plows it’s rare that any parking lot in the Beehive state lasts anywhere near the half-century mark. But, this is no ordinary parking lot.

Michael Martin, NHMU Facilities Manager shows the 80mm depth of the pavers which are designed to withstand an exceptional amount of pressure. PHOTO CREDIT: Cecily Sakrison

The LEED-certified NHMU building opened in 2011 with a bevy of site-specific, environmentally sensitive design solutions including planted roofs, solar panels, water-catchment cisterns and a pervious concrete parking lot surface designed to let stormwater runoff percolate back into the soil. The original lot’s high porosity was very effective but, over time, the lot started requiring increasingly numerous repairs and additional maintenance expenses due to uneven surfaces.

At the urging of the museum board, NHMU elected to upgrade to highly durable, permeable concrete interlocking pavers. A coarse sand-filled expansion joint around each paver allows water to percolate deep into the soil below, naturally filtering and recharging groundwater and eliminating the need to transport water off-site through additional infrastructure.

“The base layer had already been established,” noted Alter. “To lose that would have been a real shame.” Alter referred to the 2-3 feet of crushed rock that was reverse-slope graded back into the hillside and had been laid for the museum’s original lot. It’s the most important element of a permeable parking lot yet sometimes overlooked. “It’s so important that the whole system is properly engineered,” said Abby Curran, NHMU’s  Chief Operating Officer.

Project managers were able to design the installation plan to keep the museum’s lot open throughout construction with the exception of 3 days when crews worked to pave the entrance. PHOTO CREDIT: Michael Martin

“When we pave a surface we increase stormwater runoff and that can lead to problems.” said Civil Engineering Professor Christine Pomeroy.  “Excess runoff can cause erosion in urban waterways. It can flush out fish and insects that live in our streams. But it’s not only about bugs, bunnies, and treehugger stuff—erosion from high volumes of runoff can damage infrastructure, creating financial impacts.”

Many Wasatch Front residents don’t realize that, unlike water that’s funneled through the sanitary sewer system, anything that’s flushed down a storm drain goes straight to the valley’s creeks, rivers, ponds and canals. A General Public Stormwater Telephone Survey Report conducted in December 2017 for Salt Lake County found that “only 10 percent of respondents were correct when they said that ‘none’ of the county’s stormwater goes to a treatment plant.”

“Our streams can better maintain a healthy ecosystem if they’re not inundated with excess water,” notes Pomeroy.

Michael Brehm, U environmental compliance manager added “Nearly 10 years ago, the U adopted design standards and initiated policy and programs to accelerate the adoption of best management practices for stormwater. As we develop more of campus, the potential to interrupt the natural infiltration of rain becomes greater.  We’re aware of this and, in response, we’ve updated design standards to replicate natural recharge of water as closely as possible.”

The museum’s respect for and sense of place guided both the re-paving decision and process. Old concrete went to a reuse facility, new pavers were machine-layed for time and cost efficiency and half-pavers that were originally “waste product” of the machine-laying process were repurposed as borders.  “The exterior of the museum is just as important as the interior,” said Curran. “We have many programs that take advantage of our natural, native environment. Being mindful of that space and its natural systems enriches what we can offer our visitors.”


Watershed Stories is a series exploring water work across the University of Utah campus. The stories are curated by the U Water Center, the Sustainability Office and the Global Change & Sustainability Center.

The Science of Science Communication

By: Bianca Greeff, Graduate Assistant, Sustainability Office.

Communication is a vital part of science. Articulating one’s research to broad audiences can have a significant impact on how that research is discovered and shared. While scientists and communicators have often relied on intuitive rules to guide communication, science communication (as a field in itself), is supported by empirical insights that inform how to best communicate about science issues.

Sara K Yeo, assistant professor in the Department of Communication at the University of Utah, will describe the science of science communication at the GCSC Seminar Series on Tuesday, April 10, 4-5 p.m. in 210 ASB.

Sara K Yeo. Used with permission.

Yeo’s research explores how audiences seek and process information about science from the media. Her research methods include surveys, experiments embedded in surveys (either online or over the phone), and content analysis.

“If you think about where we get science from it is very rarely now in traditional news or television,” said Yeo. “Most people go online to find information about science.”

When you are reading science information online, there are many factors that influence how you understand that information. The social component of online sources (like buttons and share options) are often embedded in the source. According to Yeo, the number of likes and shares can influence how we think about the information we are reading. But it isn’t just the social components that have an influence. The language used within the message, and its context, can also influence how the information is received.

Yeo’s current project explored tweets regarding climate change and global warming, uncovering the context in which audiences used the phrases ‘climate change’ and ‘global warming’. She also worked alongside atmospheric scientists to determine if temperature variations across the United States were related to Twitter reactions.

“What we saw was the phrases ‘climate change’ and ‘global warming’ used in different contexts,” said Yeo. “Global warming was used in context to the weather and was correlated with temperature changes. Whereas, climate change tends to be used in more environmental and political type discourses.”

Mapping the discourse surrounding scientific issues on social media is an important part of science communication research. Collecting this data can inform how communication is being translated to different audiences and inform science communication scholars and practitioners.

To hear more about the empirical research being done on science communication and how the direction the field is moving, attend Yeo’s GCSC lecture, “The Science of Science Communication” on Tuesday, April 10 at 4 p.m. in 210 ASB.

Melding Perspectives, Finding Solutions

In Utah, the second driest state in the country, water is a critical issue. Our water systems are interconnected with human systems, and as our population expands and the climate changes, protecting and sharing this resource equitably will require collaboration between researchers, practitioners and decision makers.

When it comes to collaborative water research, the U’s Society, Water, and Climate Research Group (SWC) is leading the way. With the addition of five new faculty members, the group has undertaken an ambitious mandate – to meld multiple scientific perspectives toward finding sustainable water solutions for a changing world.

Ruth Watkins, senior vice president for Academic Affairs and incoming president, addresses faculty at the forum.

Many U faculty already had significant expertise related to water, society and climate, but there were areas that could be strengthened. A group of U researchers, led by the chair of the U’s Geography Department Andrea Brunelle, formed the SWC in 2013.

The team’s first task was to articulate gaps in the society, water and climate perspectives already at the U. Then they proposed new faculty positions to fill those gaps through the university’s Transformative Excellence Program. The Transformative Excellence Program is an ongoing hiring initiative seeking new faculty focused around interdisciplinary themes rather than discipline.

“If we are to truly address Utah’s – and the nation’s – societal issues, we must think beyond our traditional approaches,” said Senior Vice President for Academic Affairs Ruth Watkins, who is also the incoming present of the U. “The Transformative Excellence Program was designed to identify areas within the university where focusing on strategic additions to our faculty could enhance our preeminence and allow us to better serve the citizens of this state and country.”

Ten departments – Anthropology, Atmospheric Sciences, Biology, Economics, Environmental & Sustainability Studies, Geography, Geology & Geophysics, Political Science, Psychology, and Sociology – invested in this unique hiring process, an unprecedented level of interdepartmental collaboration.

“This hiring process was very inspiring and rewarding,” said Brunelle. “Working with a group of faculty who obviously care so much about these topics and this research that they would invest an absolutely tremendous amount of time working on these searches even without a guarantee of a departmental hire was incredible. Even after the hires were completed, all the departments are represented on the SWC executive committee, showing continued investment in this collaborative endeavor.”

As the Chronicle of Higher Education points out, this kind of cluster-hiring can be a fraught endeavor. It is challenging to ensure the process doesn’t unravel in the context of disciplinary hiring needs.

At the U, the SWC hiring process fit in with the university’s ethos of interdisciplinary collaboration.

Several years earlier, in 2011, the U underwent a similar hiring process for a small group of faculty who would work at the fringes of their discipline on climate- and environmental change-related research. This initial search ultimately brought Diane Pataki (Biology), Gabe Bowen (Geology & Geophysics) and John Lin (Atmospheric Sciences) to the U. This first group hire, which laid the groundwork for the Transformative Excellence Program, happened through the dedicated efforts of faculty in the Global Change & Sustainability Center (GCSC), which was led at the time by director emeritus Jim Ehleringer.

Audience members at the forum gather for panel presentation from (L to R) Amy Wildermuth, chief sustainability officer; Steve Burian, director of the U Water Center; Andrea Brunelle, co-chair of the Society, Water, & Climate Research Group; and Brenda Bowen, director of the Global Change & Sustainability Center.

The GCSC is a web of 140 faculty members in 10 colleges who all work within environmental and sustainability themes. The center facilitates faculty connections and interdisciplinary grants, offers graduate fellowships and research funds and manages a sustainability-related graduate certificate. In addition, the GCSC also has a series of ongoing and one-time events aimed at bringing the interdisciplinary community together in meaningful ways. All of these endeavors work to catalyze relevant research on global change and sustainability at the U.

“The investment the administration put into the GCSC really set a tone for the value that collaborative work has on this campus and that translated beautifully to the SWC project,” Brunelle said. “A great example of this is the generous contributions of time, resources and support that my Dean, Cindy Berg, provided throughout the multi-year hiring process.”

To build the SWC research group, broad descriptions of new faculty positions were posted online. The response was immediate and overwhelming. In the first year of the search, 13 candidates were brought to campus, offering fascinating talks about climate change and impacts on water and society.

After several years of intensive searches and interviews, the group is now complete with five new faculty in four departments. These five faculty bring nationally renowned research to the university while seamlessly integrating into their departmental homes.

“The Society, Water and Climate initiative has really helped to integrate GCSC scholars from across campus around a common set of questions and problems that require scholars to come together in new ways,” said Brenda Bowen, director of the GCSC. “The SWC focus has helped us to recognize and identify common research interests between seemingly separate fields and is creating opportunities for faculty and students to advance their work in new directions. The incoming SWC faculty are interdisciplinary leaders and are already catalyzing and supporting projects and grant proposals that move all of us forward as we work towards a future where humans and ecosystems thrive.”

Meet SWC hires. These members will join existing faculty who are part of the group.

William Anderegg, Biology, 2016

William Anderegg is an assistant professor in the Department of Biology at the University of Utah. His lab studies how drought and climate change affect forest ecosystems, including tree physiology, species interactions, carbon cycling and biosphere-atmosphere feedbacks. This research spans a broad array of spatial scales, from cells to ecosystems, and seeks to gain a better mechanistic understanding of how climate change will affect forests and societies around the world.

Juliet Carlisle, Political Science, arriving in 2018                                                                         

Juliet Carlisle is an associate professor in the Department of Political Science. Her research substantively deals with political behavior and public opinion with an emphasis on environmental politics and policy. In particular, Carlisle has investigated issues surrounding environmental concern, including what people know about the environment, where that knowledge originates and how that knowledge influences their opinions and behaviors. Her co-authored book, “The Politics of Energy Crises” (2017), applies policy theories to energy crises and explores energy policy during energy crises with specific attention on the role of public opinion, business interests and environmental activists.

Gannet Hallar, Atmospheric Sciences, 2016

Gannet Hallar is an associate professor in the Department of Atmospheric Science at the University of Utah and the director of Storm Peak Laboratory in Steamboat Springs, Colorado, operated by the Desert Research Institute. Her research focuses on using high-quality measurements of trace gases, aerosol physical and chemical properties and cloud microphysics to understand connections between the biosphere, atmosphere and climate, along with the impact of anthropogenic emissions on these connections.

Summer Rupper, Geography, 2015

Summer Rupper is an associate professor in the Geography Department at the University of Utah. Her research focuses on glaciers and ice sheets as recorders and indicators of climate change and as freshwater resources. Recent and ongoing projects include quantifying glacier contributions to water resources and sea-level rise, assessing glacier sensitivity to climate change and reconstructing past climate using ice core snow accumulation data and geomorphic evidence of past glacier extents. These projects are all part of a larger effort to characterize climate variability and change and the impacts of these on society.

S. McKenzie Skiles, Geography, 2017

McKenzie Skiles is an assistant professor in the Department of Geography at the University of Utah. She is an alpine and snow hydrologist whose research interests center on snow energy balance, remote sensing of mountain snow and ice and cryosphere-climate interaction. Her research methods combine numerical modeling, laboratory analysis, and field, in situ, and remotely sensed observations to better constrain the timing and magnitude of mountain snowmelt and to improve our understanding of how accelerated mountain snowmelt is impacting this critical natural reservoir over time.

The SWC is one of 10 Transformative Excellence cluster hiring initiatives currently in place at the U. Current projects include families and health research; society, water and climate; statistical science and big data; digital humanities; biophysics; sustaining biodiversity; health economics and health policy; resilient spaces (aging); science and math education; and neuroscience.

Banner image: Members of the SWC chat at the November 2017 Water Forum, the inaugural event for the Society, Water & Climate Research Group, organized by the SWC, the Global Change & Sustainability Center, and U Water Center.