Learning outcomes for sustainability
Examples from departments and programs at the University of Utah

ARCHITECTURE: Have a respect for diversity and the relationship between human behavior and the physical environment. Understand the fundamental role of the architect in society and their ethical responsibility to sustain and preserve the environment …

HISTORY: Describe the influence of political ideologies, economic structures, social organizations, cultural perceptions, and natural environments on historical events. Develop an international perspective on the past that addresses the cumulative effect of global exchange, engagement and interdependence.

CHEMICAL ENGINEERING: Ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

MATERIALS SCIENCE & ENGINEERING: Ability to select or design a materials based system, component, or process to meet desired needs withing realistic constraints, such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

GEOLOGY: Understand the role of the earth sciences in helping to solve societal problems related to natural resources, natural hazards, energy, environment and global climate.

MATHEMATICS: Analyze and understand quantitative problems which arise in applications, including relevant social, scientific, economic, and environmental issues.

CHEMISTRY: Explain why chemistry is an integral activity for addressing social, economic, and environmental problems.

ANTHROPOLOGY: Evaluate and synthesize scientific hypotheses about human ecological, biological, behavioral, and or sociocultural variation using empirical data.

HEALTH, SOCIETY & POLICY: Discuss how specific policies, programs, or practices can be used to address real-world health issues at the individual, social, cultural, ecological, and/or global levels.