WHAT YOU CAN’T SEE CAN HURT YOU

 

 

Originally published on @theU on October 15, 2018.
 
By Vince Horiuchi, public relations associate, College of Engineering
 

What if you could see nasty microscopic air pollutants in your home?

PHOTO CREDIT: Dan Hixson/University of Utah College of Engineering

PHOTO CREDIT: Dan Hixson/University of Utah College of Engineering
University of Utah School of Computing assistant professor Jason Wiese (left) and computing doctoral student Jimmy Moore conducted a study to determine if homeowners change the way they live if they could visualize the air quality in their house. They provided participants with air pollution sensors, a Google Home speaker and a tablet to measure and chart the air quality in their homes.

Engineers from the University of Utah’s School of Computing conducted a study to determine if homeowners change the way they live if they could visualize the air quality in their house. It turns out, their behavior changes a lot.

Their study was published this month in the Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. The paper was also presented Oct. 9 in Singapore during the “ACM International Joint Conference on Pervasive and Ubiquitous Computing.” The paper can be viewed and downloaded here.

“The idea behind this study was to help people understand something about this invisible air quality in their home,” says University of Utah School of Computing assistant professor Jason Wiese, who was a lead author of the paper along with U School of Computing doctoral student Jimmy Moore and School of Computing associate professor Miriah Meyer.

During the day, the air pollution inside your home can be worse than outside due to activities such as vacuuming, cooking, dusting or running the clothes dryer. The results can cause health problems, especially for the young and elderly with asthma.

University of Utah engineers from both the School of Computing and the Department of Electrical and Computer Engineering built a series of portable air quality monitors with Wi-Fi and connected them to a university server. Three sensors were placed in each of six homes in Salt Lake and Utah counties from four to 11 months in 2017 and 2018. Two were placed in different, high-traffic areas of the house such as the kitchen or a bedroom and one outside on or near the porch. Each minute, each sensor automatically measured the air for PM 2.5 (a measurement of tiny particles or droplets in the air that are 2.5 microns or less in width) and sent the data to the server. The data could then be viewed by the homeowner on an Amazon tablet that displayed the air pollution measurements in each room as a line graph over a 24-hour period. Participants in the study could see up to 30 days of air pollution data. To help identify when there might be spikes in the air pollution, homeowners were given a voice-activated Google Home speaker so they could tell the server to label a particular moment in time when the air quality was being measured, such as when a person was cooking or vacuuming. Participants also were sent an SMS text message warning them whenever the indoor air quality changed rapidly.

PHOTO CREDIT: Jason Wiese
Participants were given an Amazon table that displayed the air pollution data in an easy-to-understand line chart so they could see when and why the air quality worsened. Homeowners also could label points in time when the pollution would spike, such as when they were cooking or vacuuming.

During the study, researchers discovered some interesting trends from their system of sensors, which they called MAAV (Measure Air quality, Annotate data streams and Visualize real-time PM2.5 levels). One homeowner discovered that the air pollution in her home spiked when she cooked with olive oil. So that motivated her to find other oils that produced less smoke at the same cooking temperature.

Another homeowner would vacuum and clean the house just before a friend with allergies dropped by, to try to clean the air of dust. But what she found out through the MAAV system is that she actually made the air much worse because she kicked up more pollutants with her vacuuming and dusting. Realizing this, she started cleaning the house much earlier before the friend would visit.

Participants would open windows more when the air was bad or compare measurements between rooms and avoid those rooms with more pollution.

“Without this kind of system, you have no idea about how bad the air is in your home,” Wiese says. “There are a whole range of things you can’t see and can’t detect. That means you have to collect the data with the sensor and show it to the individual in an accessible, useful way.”

Researchers also learned that circumstances that made the air pollution worse differed in each home. Vacuuming in the home, for example, would have different effects on the air quality. They also learned that if homeowners could visualize the air quality in their home, they always stayed on top of labeling and looking at the data.

Wiese says no known manufacturers make air quality systems for the home that allow residents to visualize and label the air quality in this way, but he hopes their research can spur more innovation.

The study involved engineering in collaboration with other University of Utah scientists, including biomedical informatics and clinical asthma researchers. It was funded as part of a larger National Institutes of Health program known as Pediatric Research using Integrated Sensor Monitoring Systems (PRISMS), launched in 2015 to develop sensor-based health monitoring systems for measuring environmental, physiological and behavioral factors in pediatric studies of asthma and other chronic diseases.

Research reported in this publication was funded by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Number U54EB021973. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

 

 

Clear The Air

By Vince Horiuchi, public relations associate, College of Engineering

Air conditioning and heating systems are not only great for keeping a home cool or warm, but they also help clean the air of harmful pollutants.

While home thermostats control HVAC (heating, ventilation, and air conditioning) systems based on temperature, engineers from the University of Utah have studied the effects of controlling them based on a home’s indoor air quality. They have discovered that programming your air conditioner and furnace to turn on and off based on the indoor air quality as well as the temperature doesn’t waste a lot of additional energy but keeps the air much cleaner.

Their findings, published in a paper titled Smart Home Air Filtering System: A Randomized Controlled Trial for Performance Evaluation, were presented on Sept. 26 at this year’s “IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies” in Washington D.C. The lead authors of the paper are University of Utah electrical and computer engineering professor Neal Patwari and U electrical and computer engineering doctoral graduate, Kyeong T. Min.

PHOTO CREDIT: University of Utah Professor Neal Patwari
This graph shows that when a home heating and air conditioning system turns on and off based on temperature alone (normal), the air quality in the home can result in the dirtiest air based on 2.5 particulate matter. Meanwhile leaving the heating and air conditioning on all the time (On) results in the cleanest air at the expense of using the most energy. The SmartAir plot shows that a system that turns on and off based on both temperature and air quality can result in a home with much cleaner air but without a much higher cost in energy.

The researchers, led by Patwari, purchased a series of off-the-shelf portable air pollution sensors and connected them wirelessly to Raspberry Pis, small and inexpensive computers for hobbyists. With specialized software developed by the engineers, the computers were programmed to automatically turn on the air conditioning system whenever the particulate matter in the air reached a certain point and turn off the system when the particulate matter dipped below a certain measurement.

For the study, 12 sensors were deployed in four homes in 2017. In each house, two of the sensors were inside rooms, and one was placed outside under a covered porch. Starting at midnight each night, each home would randomly operate the sensors under one of three conditions: “Normal,” in which the HVAC systems turned on and off normally based on temperature only; “Always On,” in which the air system operated continuously all day, and; “SmartAir,” in which the system turned on and off the HVAC fan based on the pollution measurement in the house as well as the thermostat’s temperature setting.

Based on five months of data, the study revealed that operating with the “SmartAir” setting in which it turned on and off based on temperature and air quality cleaned the air almost as well as if the HVAC fan was operating all day, but it used 58 percent less energy. Meanwhile, when the heating and cooling system operates normally without regards to the air quality, the air was 31 percent dirtier than with the “SmartAir” setting.

“For someone with asthma, an exacerbation can be triggered by poor air in the home, particularly for children,” Patwari says. “This kind of monitoring system could allow them to live more comfortably and with fewer asthma symptoms and fewer trips to the emergency room.”

Because of ordinary activities in the home such as cooking, vacuuming and running the clothes dryer, air quality inside a home can at certain times of the day be much worse than outside. Constant exposure to indoor air pollutants can lead to short-term health effects such as irritation of the eyes, nose, and throat, as well as headaches, dizziness, and fatigue, according to the United States Environmental Protection Agency. Long-term exposure could also lead to respiratory diseases, heart disease and cancer and could be fatal for some. Yet there are no known home or commercial HVAC systems that are controlled by air quality sensors.

Patwari’s study involves engineering in collaboration with other University of Utah scientists, including biomedical informatics and clinical asthma researchers. It was funded as part a larger National Institutes of Health program known as Pediatric Research using Integrated Sensor Monitoring Systems (PRISMS), launched in 2015 to develop sensor-based health monitoring systems for measuring environmental, physiological and behavioral factors in pediatric studies of asthma and other chronic diseases.

Research reported in this publication was funded by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Number U54EB021973. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Projecting Nature

By: Nicholas Apodaca, Graduate Assistant, Sustainability Office.

Driving into Salt Lake City from the west, the shady streets and verdant gardens can feel like an oasis at the edge of the desert. Yet the Salt Lake Valley was not always so green. As people settled the valley, they brought new plants to the landscape. Whether for agriculture, aesthetics, or utility, human hands dramatically changed the ecology of the Salt Lake Valley.

For ecologists, the urban environment presents a compelling and pressing issue, as scientific knowledge is complicated by considerations of human values and decision-making. Diane Pataki, professor of Biology and associate dean of research for the College of Science, will explore the complexities of urban ecology in her lecture from 4-5 p.m. on Tuesday, Sept. 25 as part of the GCSC Seminar Series.

Pataki’s faculty appointment is in the School of Biological Sciences, but she also teaches in the Department of City & Metropolitan Planning. Her work is necessarily interdisciplinary—her Urban Ecology Research Lab examines the many ecological factors at play in urban spaces. Through research on climate, water, pollution, aesthetics and other factors affecting the ecology of urban spaces, Pataki’s research provides valuable data that can better inform how and what we plant.

As climate change and resource scarcity become more important issues in our daily lives, many seek to make more informed decisions in their garden. “Most of the vegetation in Salt Lake City is planted by people, so people are always making decisions: what should they plant, and what should they remove?” Pataki says.

However, most research in ecology doesn’t fully account for how human decision-making affects the environment. Pataki notes that we have extensive scientific knowledge about how plants interact with climatic and biological forces but less about the human element. Yet, in studying urban spaces, the decisions humans make are significant, and often have little relevance to the native ecology of the region.

“People plant things for certain reasons and many of those reasons are aesthetic, and not scientific,” explains Pataki, “and that’s perfectly valid. So how do you bring in things like aesthetics into a decision-making framework?”

The picture is further complicated by the fundamental objectivity of scientific research, Pataki explains, because “traditionally, scientists are not supposed to tell people what to do. Science is supposed to be objective, and we’re not supposed to lobby for certain outcomes.” Science seeks to be objective and not prescriptive, and yet studying urban ecology means ultimately making decisions about what is necessary to a place. To different people, different things are important. “We project things onto urban spaces and not all of those things are scientific. We project cultural meaning onto spaces, we project values onto spaces, we want spaces to have a certain interaction with people, and that interaction can be highly subjective.”

As a result of these philosophical questions, Pataki has collaborated with researchers in the Philosophy department. Ultimately, she explains, they are seeking to understand, “How do you do science in a normative context?”

How can research on urban ecology navigate this dissonance between objective research and subjective decision-making? Come to ASB 210 on Tuesday, Sept. 25 to hear Pataki explore this fascinating intersection of urban space, science and philosophy.

 

THE WASATCH FRONT: A LIVING LAB

Originally posted on @theU on September 17, 2018

By Paul Gabrielsen, science writer, University of Utah Communications

University of Utah scientists know how to turn a challenge into an opportunity. Repeatedly, researchers at the U have developed innovative research solutions to some of the Salt Lake Valley’s most serious environmental issues. Light rail trains sample the air as they dart around the valley. Camera traps keep their eyes on the wildlife in mountain canyons. Climate and hydrological observations track rain, snow, plant stress, groundwater and streamflow from the mountain crest to the valley floor.

All of these environmental factors—earth, air, water and life—are interconnected, though. A change in one has the potential to impact any or all of the others. So how do U researchers respond to this extraordinary complexity? By banding together. This fall, the U launches a new university-wide collaboration called the Wasatch Environmental Observatory.

“We’ve talked about campus as a living lab, and faculty have gotten grants to develop research infrastructure throughout the Wasatch Front,” says Brenda Bowen, director of the Global Change and Sustainability Center (GCSC). “We have all this infrastructure and we thought: ‘How can we pull this together in a new way to not just study campus as a living lab, but our home, the whole Wasatch Front?’”

This observatory isn’t a single facility like, say, an astronomical observatory. It’s a network of sensors and instruments, stretched all across the Wasatch Front, that collectively monitor multiple environmental metrics. “We’re pulling together all of the systems that were initially funded by individual researchers or large multi-researcher grants to make it into something more than the sum of its parts,” Bowen says.

Part of the observatory is relatively stationary, providing consistent, long-term data. But part is portable and deployable, Bowen says. “As events occur, we can deploy infrastructure into a certain area by pulling together hydrologic, atmospheric and ecological research facilities into a distributed observatory or field station.”

Paul Brooks, professor of geology and geophysics, says that the observatory is a framework for future projects and infrastructure to be added in. State, federal and local agencies, he says, have already expressed interest in tying their instrumentation into the WEO network. The measurements and results from WEO can then be used by those stakeholder agencies. “That’s one of the exciting areas of WEO,” Brooks says. “It takes the new knowledge generated by students and faculty and ports it through as quickly as possible to people on the ground who use that knowledge to make better decisions.”

For Bowen and the GCSC, which brings together faculty from across campus to study environmental issues, WEO is a fulfillment of the center’s mission. “It’s realizing what GCSC strives to be,” Bowen says. “WEO will help integrate everything we’re doing to advance sustainability in our own backyard.” 

WEO will be led by a committee of six faculty members (including Bowen and Brooks) hailing from the departments of Geology & Geophysics, Atmospheric Sciences, Civil and Environmental Engineering, and the School of Biological Sciences. Beyond that, nearly 40 researchers from 13 different departments and eight colleges already have research or outreach projects associated with WEO.

According to a project summary from GCSC, current facilities to be linked together through WEO include:

  • Distributed hydroclimate, meteorological, biological and hydrological observations in seven catchments spanning the Wasatch Crest through the Great Salt Lake including six closely spaced stations spanning an elevation gradient from the top of Red Butte Creek down through campus and on to the Jordan River
  • Experimental stormwater, landscape, transportation, and architectural design infrastructure on campus
  • Long-term ecological, geological, and snow study sites
  • Seven atmospheric trace gas and climate stations from Hidden Peak (Snowbird) to the Salt Lake Valley floor
  • Light rail-based atmospheric observations distributed across land use and elevational gradients in the Salt Lake Valley (TRAX)
  • Deployable and relocatable high-precision atmospheric and hydrologic observation equipment
  • Co-Located, long-term, and spatially extensive databases from multiple disciplines

All of that equipment requires service, repair and maintenance. So WEO provides for two full-time research technical specialists, Dave Eiriksson and Ryan Bares, to keep the sensors running.

Brooks says the interconnectedness of the WEO sensor systems allows researchers to study the impacts on one environmental system, say, urban development, on others, such as the quality of water in urban streams.

“The idea is that each individual solution we have exists in a broader context,” Brooks says. “We want to be as comprehensive as possible so that the solution to one issue doesn’t then create a new problem down the line that perhaps we didn’t think of.”

Brooks adds that the U is uniquely positioned, with researchers and facilities, to study environmental issues common throughout the West.

“WEO brings those researchers and resources together,” he says, “so instead of addressing these issues piecemeal we have the ability to address them in concert.”

Want to join in?

If you’re considering or conducting environmental research along the Wasatch Front, come to a think tank mixer presented by GCSC on Sept. 26, from 5-7 p.m. at the College of Law, sixth floor, Flynn Faculty Workshop.

Learn more and register here.

 

The Intersection of Greenhouse Gases and Air Quality

By: Nicholas Apodaca, Graduate Assistant, Sustainability Office.

As Utah residents know well, air quality can have a serious effect on our daily lives. Wildfires, inversions, dust, and pollution colliding with the complex geography of the Salt Lake region all contribute to the thick haze that can settle over the valley. However, the exact conditions and effects of these issues are not yet completely understood.

John Lin, professor of atmospheric sciences here at the University of Utah, will shine some light on these regional air quality problems in his lecture on Tuesday, September 11 in 210 ASB as part of the Global Change & Sustainability Center’s annual seminar series. Lin will lay out some of the complex conditions that affect air quality, and show just how interconnected they are to greenhouse gas emissions and climate change across the West.

He’ll explain how air quality can be indicative of many diverse conditions converging.

Of major concern in Lin’s research on Salt Lake City is dust blown off the Great Salt Lake. As the climate warms and water levels lower more frequently, dust is increasingly exposed to the air and carried into the atmosphere. Salt Lake City’s proximity to the lake leaves it particularly susceptible to the ill effects. This lake dust also effects snow, as it settles on the snowpack and causes it to melt faster.

Wildfires also play a big part in introducing particles to the atmosphere. Smoke from across the West can move hundreds of miles in the atmosphere to Utah. As climate change makes fires more frequent and intense, the relationship between global processes and regional air quality becomes more evident.

This relationship is visible in our daily lives.

“When we drive, the stuff that comes out of our tailpipes includes greenhouse gases but also NOx [Nitrogen Oxide] and PM2.5 which cause air quality problems,.” Lin said.

Often the source of local pollution is the source of emissions that drive climate change. Each contributes to a feedback loop that exacerbates their combined effect.

Lin’s research at the U has begun to uncover and understand the sources of these problems. Through two research groups, LAIR and U-ATAQ, Lin has used extensive data from a complex network of air quality monitoring systems throughout the region. The TRAX Air Quality monitoring system installed four years ago has been a major player in this network. The system has allowed Lin and his colleagues to closely monitor the valley’s air in its most densely-populated areas. Working together with city government, this research is directly informing new air quality initiatives in Salt Lake City. Collaborative work with the University of Utah Medical School is also applying this data to public health research.

The possibilities emerging from an understanding of how air quality and climate change intersect may have positive consequences outside of Utah.

“There’s a fair bit of interest from cities around the West who want to reduce emissions,” said Lin. “The cities are at the forefront, and hopefully the scientists can help in some way. What we hope to do is use our research to help assess if, with new measures in place, the reduction in emissions are actually happening.”

Come to Lin’s seminar, ” “The greenhouse gas-air quality nexus: experiences from the Western U.S.” at 4 p.m. in 210 ASB on Tuesday, September 11 to learn more about this cutting-edge research of the intersection of air quality and climate change, and how it affects us here in Salt Lake City and the West.  

PEDESTRIAN SAFETY

By Ginger Cannon, active transportation manager, University of Utah

The University of Utah is committed to reducing carbon emissions, as well as improving local air quality by reducing impacts from university operations and daily commute trips. Consequently, using sustainable modes of transportation to, from and around campus is supported and encouraged.

The university prioritizes the safety of pedestrians and those riding wheeled devices such as bicycles, skateboards, rollerskates and scooters while traveling on university premises.

To ensure the safety of all on pathways and sidewalks, please remember the following:

  • Every person riding any device must yield the right of way to pedestrians at all times. Report any unsafe behavior or conditions to Campus Police at 801-585-COPS.
  • The campus speed limit for wheeled devices is 10 mph. Always wear a helmet, be aware of your surroundings and ride your device responsibly.
  • Shared mobility devices like bike share and e-scooters are managed by private operators and are used to access the university campus. When renting any shared device, please remember:

The university is working to further define regulations for shared mobility devices on university premises. Shared mobility is an evolving area of transportation services and regulations will change according to Utah state code, Salt Lake City ordinance and direction of university administration.

For emergencies or to report violations of university policy, call 801-585-COPS (2677).

POWER TO THE PEOPLE

Originally published on @theU on August 20, 2018.

By Vince Horiuchi, public relations associate, College of Engineering

Hurricane Maria’s devastation of Puerto Rico last September, which left nearly all the island’s 3.4 million residents without power, is one of the most frightening scenarios for a metropolis: A natural disaster or cyberattack wipes out a city’s power grid.

University of Utah electrical and computer engineering assistant professor Masood Parvania has received a $2 million grant from the Office of Naval Research to build a new laboratory and develop technology that would help communities get their power back online faster in the wake of a natural disaster or cyberattack.
PHOTO CREDIT: Dan Hixson/University of Utah College of Engineering

But University of Utah electrical and computer engineering assistant professor Masood Parvania is building a new laboratory to develop technology that would help communities get their power back online faster in the wake of those kinds of devastating events.

He was awarded a three-year, $2 million grant from the U.S. Navy’s Office of Naval Research beginning July 1 to build the lab and research and test technology for microgrids–smaller, more localized versions of a city’s power grid that could provide backup electricity in a catastrophic situation.

When a natural disaster hits, much of a city’s power grid that receives electricity from sources such as thermal and hydroelectric plants, can go dark.

Microgrids are power systems in smaller areas of a city that operate autonomously from the main grid and get electricity from sources like solar panels or energy storage devices. They can provide emergency power to neighborhoods and essential services such as hospitals until the main system is restored. Microgrids can be as small as a building like a college campus or military base that use backup generators, or a large neighborhood that uses wind turbines or geothermal generation. Microgrids, for example, are now being created all over Puerto Rico in the event of future massive power outages.

Parvania and his team at the Utah Smart Energy Lab (U-Smart) will be developing microgrid controllers that act as the computerized brains of a microgrid and determine how to best distribute electrical power in an area. These controllers will be faster, smarter and more secure from cyberattacks, the newest concern for power companies. Two days before Christmas in 2015, for example, Russian hackers remotely attacked the control centers of three Ukrainian electricity distribution companies, briefly wiping out power to more than 200,000 customers.

“Today, power grids are becoming more and more vulnerable with modernization and digitization,” Parvania says. “These microgrid controllers will be faster and more accurate in returning power back to communities. But we also want to make sure that once they work they are not affected by cyberattacks.”

Parvania’s laboratory, which will be built on the University of Utah’s College of Engineering campus, will consist of software and specialized computers called “real-time digital simulators” that will simulate a power system. New technologies that his team develops can be experimented on this new testbed. The laboratory also will be used to help educate the next generation of power engineers who are studying microgrids.

Another component of the research grant involves commercializing any technology that Parvania’s team develops. The University of Utah is partnering with the Utah Science Technology and Research (USTAR) initiative, Governor’s Office of Energy Development, Idaho National Lab, and the U’s Office of Technology and Venture Commercialization.

“We are also going to work with utilities, energy companies, and military bases to see how we can commercialize our technology for the betterment of communities,” says Parvania.

 

 

 

 

WATERSHED PROTECTION

Originally posted in @theU on August 27th, 2018

By Cecily Sakrison, U Water Center

Some come to the Natural History Museum of Utah for the world-class dinosaur exhibit, others are drawn to the vast collection of gems and minerals. But if you’re interested in sustainable engineering and infrastructure, you’ve arrived at your destination the moment you park your car.

 

It could be argued that the museum’s newest exhibit is its “50-year parking lot”—an engineering feat that’s “almost unheard of in Utah,” said David B. Alter, vice president of Ensign Engineering and project manager for the lot upgrade. With the pressures of ice, snow, salt and plows it’s rare that any parking lot in the Beehive state lasts anywhere near the half-century mark. But, this is no ordinary parking lot.

Michael Martin, NHMU Facilities Manager shows the 80mm depth of the pavers which are designed to withstand an exceptional amount of pressure. PHOTO CREDIT: Cecily Sakrison

The LEED-certified NHMU building opened in 2011 with a bevy of site-specific, environmentally sensitive design solutions including planted roofs, solar panels, water-catchment cisterns and a pervious concrete parking lot surface designed to let stormwater runoff percolate back into the soil. The original lot’s high porosity was very effective but, over time, the lot started requiring increasingly numerous repairs and additional maintenance expenses due to uneven surfaces.

At the urging of the museum board, NHMU elected to upgrade to highly durable, permeable concrete interlocking pavers. A coarse sand-filled expansion joint around each paver allows water to percolate deep into the soil below, naturally filtering and recharging groundwater and eliminating the need to transport water off-site through additional infrastructure.

“The base layer had already been established,” noted Alter. “To lose that would have been a real shame.” Alter referred to the 2-3 feet of crushed rock that was reverse-slope graded back into the hillside and had been laid for the museum’s original lot. It’s the most important element of a permeable parking lot yet sometimes overlooked. “It’s so important that the whole system is properly engineered,” said Abby Curran, NHMU’s  Chief Operating Officer.

Project managers were able to design the installation plan to keep the museum’s lot open throughout construction with the exception of 3 days when crews worked to pave the entrance. PHOTO CREDIT: Michael Martin

“When we pave a surface we increase stormwater runoff and that can lead to problems.” said Civil Engineering Professor Christine Pomeroy.  “Excess runoff can cause erosion in urban waterways. It can flush out fish and insects that live in our streams. But it’s not only about bugs, bunnies, and treehugger stuff—erosion from high volumes of runoff can damage infrastructure, creating financial impacts.”

Many Wasatch Front residents don’t realize that, unlike water that’s funneled through the sanitary sewer system, anything that’s flushed down a storm drain goes straight to the valley’s creeks, rivers, ponds and canals. A General Public Stormwater Telephone Survey Report conducted in December 2017 for Salt Lake County found that “only 10 percent of respondents were correct when they said that ‘none’ of the county’s stormwater goes to a treatment plant.”

“Our streams can better maintain a healthy ecosystem if they’re not inundated with excess water,” notes Pomeroy.

Michael Brehm, U environmental compliance manager added “Nearly 10 years ago, the U adopted design standards and initiated policy and programs to accelerate the adoption of best management practices for stormwater. As we develop more of campus, the potential to interrupt the natural infiltration of rain becomes greater.  We’re aware of this and, in response, we’ve updated design standards to replicate natural recharge of water as closely as possible.”

The museum’s respect for and sense of place guided both the re-paving decision and process. Old concrete went to a reuse facility, new pavers were machine-layed for time and cost efficiency and half-pavers that were originally “waste product” of the machine-laying process were repurposed as borders.  “The exterior of the museum is just as important as the interior,” said Curran. “We have many programs that take advantage of our natural, native environment. Being mindful of that space and its natural systems enriches what we can offer our visitors.”


Watershed Stories is a series exploring water work across the University of Utah campus. The stories are curated by the U Water Center, the Sustainability Office and the Global Change & Sustainability Center.

Lassonde Studios Awarded LEED Gold Building Certification

The Lassonde Entrepreneur Institute at the University of Utah announced today that Lassonde Studios – a new five-story, student innovation space – has been awarded LEED Gold certification. The LEED (Leadership in Energy and Environmental Design) rating system, developed by the U.S. Green Building Council (USGBC), is the foremost program for buildings, homes and communities that are designed, constructed, maintained and operated for improved environmental and human health performance.

“We are proud to exceed our goals and achieve LEED Gold certification for Lassonde Studios,” said Troy D’Ambrosio, the executive director of the Lassonde Institute and an assistant dean at the David Eccles School of Business. “The building is not only a one-of-a-kind facility for student entrepreneurs. It is also a model for sustainable construction practices. We look forward to continued growth and recognition as one of the best places in the country for student entrepreneurs.”

The five-story, 160,000-square-foot Lassonde Studios building opened in 2016. The building is dedicated to supporting student entrepreneurship and innovation. The first floor features a 20,000-square-foot creation space with meeting space, cafe, tools, workshop and lounge areas. The upper four floors have bedrooms and living space for 400 residents. All students on campus are welcome to “live, create, launch” here.

Lassonde Studios has received international attention since it opened. It has won many awards and been featured by publications including The New York Times, Bloomberg Businessweek and Fast Company. In 2017, Architectural Digest named Lassonde Studios one of the “9 Best New University Buildings Around the World.”

Numerous people and organizations have made the Lassonde Studios possible. Building partners include University of Utah Housing & Residential Education, Cannon Design, EDA Architects and Gramoll Construction.

Lassonde Studios achieved LEED certification for implementing practical and measurable strategies and solutions aimed at achieving high performance in: sustainable site development, water savings, energy efficiency, materials selection and indoor environmental quality.

LEED certification is based on a 110-point scale. Sixty points are required to achieve Gold certification. The certification ranks projects on categories including: Sustainable Sites, Water Efficiency, Energy & Atmosphere, Materials & Resources, Indoor Environmental Quality, Innovation in Design, and Location & Transportation.

Here are some of the categories and qualities of Lassonde Studios that helped earn the project enough points to achieve Gold certification:

  • Sustainability Sites – The project demonstrates development density and community connectivity, and it provides easy access to alternative modes of transportation.
  • Water Efficiency – The site uses energy efficient landscaping through limited sod and drought tolerant plants. It also uses low-flow water fixtures.
  • Energy & Atmosphere – The building optimizes energy performance in ways including the use of LED for 100 percent of the lighting.
  • Materials & Resources – The project minimized construction waste and utilized recycled content in 21.2 percent of the building materials. Most of the recycled materials were used in the concrete structure.
  • Indoor Environmental Quality – The project used building materials and finishes that met quality standards.

“Lassonde Studios has been an incredible project to work on,” said Nick Lorenzo, of EDA Architects, who submitted the application for LEED certification. “The design and mission of this building are unlike any other. The LEED certification provides further evidence that we have created an incredible, state-of-the art building for student entrepreneurs to live, create and launch their ideas.”

Lassonde Studios joins many other buildings on the University of Utah campus with LEED certification. The first building on campus to receive LEED certification was the Spencer F. and Cleone P. Eccles Health Sciences Education Building in 2006. Since 2009, the state has required that all new public buildings achieve at least LEED Silver certification.

LEED is the foremost program for the design, construction and operation of green buildings. More than 92,000 commercial and institutional projects are currently participating in LEED, comprising more than 19.3 billion square feet of construction space in all 50 states and more than 167 countries and territories.

“The work of innovative building projects such as Lassonde Studios is a fundamental driving force in transforming the way buildings are built, design and operated,” said Mahesh Ramanujam, president and CEO, USGBC. “Buildings that achieve LEED certification are lowering carbon emissions, creating a healthier environment and reducing operating costs while prioritizing sustainable practices.”

Learn more about Lassonde Studios at lassonde.utah.edu/studios.

The Science of Science Communication

By: Bianca Greeff, Graduate Assistant, Sustainability Office.

Communication is a vital part of science. Articulating one’s research to broad audiences can have a significant impact on how that research is discovered and shared. While scientists and communicators have often relied on intuitive rules to guide communication, science communication (as a field in itself), is supported by empirical insights that inform how to best communicate about science issues.

Sara K Yeo, assistant professor in the Department of Communication at the University of Utah, will describe the science of science communication at the GCSC Seminar Series on Tuesday, April 10, 4-5 p.m. in 210 ASB.

Sara K Yeo. Used with permission.

Yeo’s research explores how audiences seek and process information about science from the media. Her research methods include surveys, experiments embedded in surveys (either online or over the phone), and content analysis.

“If you think about where we get science from it is very rarely now in traditional news or television,” said Yeo. “Most people go online to find information about science.”

When you are reading science information online, there are many factors that influence how you understand that information. The social component of online sources (like buttons and share options) are often embedded in the source. According to Yeo, the number of likes and shares can influence how we think about the information we are reading. But it isn’t just the social components that have an influence. The language used within the message, and its context, can also influence how the information is received.

Yeo’s current project explored tweets regarding climate change and global warming, uncovering the context in which audiences used the phrases ‘climate change’ and ‘global warming’. She also worked alongside atmospheric scientists to determine if temperature variations across the United States were related to Twitter reactions.

“What we saw was the phrases ‘climate change’ and ‘global warming’ used in different contexts,” said Yeo. “Global warming was used in context to the weather and was correlated with temperature changes. Whereas, climate change tends to be used in more environmental and political type discourses.”

Mapping the discourse surrounding scientific issues on social media is an important part of science communication research. Collecting this data can inform how communication is being translated to different audiences and inform science communication scholars and practitioners.

To hear more about the empirical research being done on science communication and how the direction the field is moving, attend Yeo’s GCSC lecture, “The Science of Science Communication” on Tuesday, April 10 at 4 p.m. in 210 ASB.