TAKING THE LEED

Origninally posted in @theU on Oct. 23, 2017.

By Shawn Wood, communications specialist, University Marketing & Communications

The University of Utah announces its first Athletics building to be LEED Gold certified. The Jon M. and Karen Huntsman Basketball Facility, home to both men’s and women’s basketball, is officially a leader in sustainable design and energy efficiency. This is the eighth building on campus to be certified Gold or higher, and represents a commitment to a sustainable future through design.

Leadership in Energy and Environmental Design (LEED) is a building rating system created by the United States Green Building Council to evaluate quality and achievement based on: sustainable design; green practices during construction; and environmental performance over a year after construction is complete.

“We are thrilled that Athletics shares our vision to create a more sustainable campus,” said Deputy Chief Sustainability Officer Myron Willson. “They understand that our environments not only impact the ecosystems around us, but also the health and wellness of the student athletes and staff that occupy the facility every day.”

Sustainable building materials

The 102,000-square-foot facility was manufactured using over 23 percent of recycled materials and resources strategically selected from the Utah region to support local businesses and to reduce the environmental impacts associated with transportation. Over 12.5 percent of the total building materials include products that were manufactured and extracted within 500 miles of the site. During construction, the project diverted nearly 85 percent of the on-site generated construction waste away from landfills.

Eco-friendly site design

The design implements a stormwater management plan that results in a 25 percent decrease in the volume of stormwater runoff from intense rain events. In addition, the hardscape and roof surfaces, including a rooftop terrace and garden, which offers a 360-degree view of the Wasatch and Oquirrh Mountains, the university campus, downtown Salt Lake City and the Great Salt Lake, were designed to mitigate urban heat island — heat buildup around the facility — with lighter materials to in order to minimize the impacts of the reflected sun on surrounding wildlife habitats. The training facility is near U shuttle stops and UTA bus and TRAX routes. It also features on-site bicycle storage conveniently located near the campus bicycle masterplan’s desired routes.

Energy efficiency

The practice facility exceeds the LEED baseline energy performance rating by 38 percent thanks to numerous strategies to make the building more efficient. For example, all interior and exterior light fixtures are LED’s, the HVAC systems, building insulation and windows were selected to minimize energy waste. Exterior fixtures were positioned to minimize light pollution, improve nighttime visibility, and reduce impacts on surrounding environments. An Indoor Air Quality (IAQ) standard was also set so a system could monitor outdoor air delivery, increase ventilation, and enhance thermal comfort of occupants.

The U is also a proud member of the Green Sports Alliance. As a member, U Athletics programs commit to energy-efficient and sustainable practices for new buildings; prevent recyclable items from entering landfills after games; and other sustainable improvements. The U was the first in the state, either collegiate or professional, to join the alliance.

Project designer Jeremy Krug, senior associate at Populous, also worked on the Sorenson High Performance Center, a building adjacent to the basketball training facility. Together these buildings, connected to the Health, Physical Education and Recreation (HPER) Complex, serve 17 of the U’s sports programs and accommodate the needs of each program while serving as a model for what is possible in sustainable design.

“The Jon M. and Karen Basketball Facility was designed to integrate the University’s mission of sustainability as a core principle. The whole design team is honored to have worked with this great University to deliver a facility that aligns with those initiatives. It’s arguably one of the most high-impact facilities in the Pac-12. The building embodies athletic and academic excellence, and can now proudly add sustainability to that list,” said Krug.

CLEAN ENERGY FOR ALL

Originally posted in @theU on Oct. 10, 2017

By Liz Ivkovich, University of Utah Sustainability Office

Medical equipment that helps treat and cure hospital patients, big data computer servers critical to research, hundreds of classrooms lit and climate-controlled – carrying out the mission of University of Utah requires a lot of electricity.

Soon, 50 percent of that electricity will come from carbon-free solar and geothermal energy sources, reducing the university’s total carbon emissions by 25 percent. This means that the U will have the largest long-term green power contract of any U.S. university. With this project, the University of Utah rises to the top of universities in the U.S. Environmental Protection Agency’s list of Green Power Partnership Long-Term Contracts.

In 2008, the university joined the American College and University Presidents’ Climate Commitment, dedicating the campus to carbon neutrality by 2050. This is an aggressive goal that requires a multi-layered strategy, including this off-site power purchasing agreement, as well as energy efficiency measures and on-campus energy.

The agreement between the university, Cyrq Energy, a Utah company based in Salt Lake City, and Berkshire Hathaway Energy Renewables, will provide 20 megawatts of geothermal energy and 10 megawatts of solar energy to the university for the next 25 years.

“This project connects the university to a diverse array of energy resources that are important to the economic health of our state,” said U President David W. Pershing. “Both our Energy and Geoscience Institute and our Department of Geology and Geophysics are known for their work on geothermal resources. We are pleased to be part of a project that so closely aligns with our research strengths and allows the university to take a dramatic step forward on its climate commitment and toward improving air quality.”

The project began last summer when, as a result of partners in the Energy and Geoscience Institute, the university became aware of geothermal projects that were coming online. Geothermal power plants access energy from the earth through drilling water or steam wells to provide a steady resource with less fluctuation in energy production than an intermittent resource like solar or wind.

The university then engaged in a series of technical reviews of renewable energy options that might work for the university’s needs. Following these reviews, the planning team drafted a request for proposals calling for 20 megawatts of geothermal energy and up to 10 megawatts of complementary solar. The final proposal accepted was a joint proposal from Cyrq and Berkshire Hathaway Energy.

“Cyrq is honored to partner with Berkshire Hathaway Energy, Rocky Mountain Power and the U on this exceptional project, and we look forward to supporting the university’s renewable energy goals,” said Nick Goodman, Cyrq CEO.

In order to be finalized, the university must enter into an agreement with Rocky Mountain Power under Schedule 32 for the transmission of the renewable power along Rocky Mountain Power’s network. All agreements are subject to review by the Public Service Commission.

With this contract and the power generated by existing on-campus solar PV projects, the university’s annual green power purchase rises to 173,328,700 kilowatt hours (kWh). This is the largest long-term contract kWh for any university on the EPA’s list of Green Power Partnership Long-Term Contracts.

“This is a big move forward for the University of Utah, and we have been very fortunate to have the opportunity to work with many terrific partners, including the Sustainability and Energy Management Team in Facilities.,” Wildermuth said. “Their hard work to improve our energy efficiency and systems is what made an arrangement like this possible. But we are not done. There is still more we can do to reduce our energy use, our air emissions and our carbon footprint.”

The university is committed to a multi-layered carbon-neutrality strategy, including energy efficiency measures and on-site energy creation like rooftop solar and solar parking canopies. A study is underway to determine what additional percentage of the university’s energy demand could be produced on campus and where those projects might be located. In addition to working on university emissions, the U has also helped to spur the local renewable energy market through U Community Solar, an innovative group purchasing program.

Carbon-neutrality by 2050? We’re one big step closer.

10 YEARS OF SUSTAINABILITY

Originally posted in @theU on Sept. 22, 2017.

By Amy Brunvand, Sustainability Librarian.

The University of Utah Sustainability Office turns 10 years old this year, and it is truly amazing to look around campus and realize how much has changed for the better in the past decade. Nowadays, there are campus vegetable gardens with ripe tomatoes and hives of buzzing bees, solar parking canopies that provide both power and shade, electric vehicles plugged into charging stations, crowds of students arriving on TRAX light-rail trains, tasty vegetarian and vegan options on offer at the cafeteria, water bottle refilling stations in most buildings, and plenty of recycling bins to divert waste from the landfill.

The curriculum has changed, too. Undergraduates can earn a number of sustainability-focused degrees and minors, while graduate students in any field can add an Interdisciplinary Graduate Certificate in Sustainability to their credentials.

Over the years, students, staff and faculty have all contributed to a vision of making the University of Utah a better place. In September, the Sustainability Office will celebrate these milestones and achievements with a Sustainability Showcase highlighting current programs and resources, and a special presentation by Dr. Vandana Shiva who advocates for traditional agriculture, and environmental and social justice issues worldwide.

Join us at the Sustainability Showcase on Friday, Sept. 29, 11 a.m.-2 p.m. on the Marriott Library Plaza for food, live music and fun activities. Later this fall, Dr. Vandana Shiva will present a public lecture at Libby Gardner Concert Hall on Saturday, Oct. 20, 7:30 p.m., as part of UtahPresents 2017-18 season. Tickets are available now.

1991-2006: Early Beginnings of Sustainability

Ten years ago, the transition to campus sustainability had barely begun, although a few major milestones laid the foundation. The first big sustainable change was a side effect of trying to cope with limited parking; in 1991, Commuter Services launched the Ed Pass program to give a UTA transit pass to every student and employee on campus. Not only did this encourage people to leave their cars at home, it helped expand Salt Lake City’s light rail network when enthusiastic transit riders from the U showed up at City Council meetings to press for construction of the Red Line TRAX, which opened in 2001.

In 1996, a biology professor named Fred Montague started an “unofficial” campus vegetable garden to teach students about his ideas for ecological gardening. That unofficial garden became the foundation of today’s Edible Campus Gardens, which teaches volunteers how to grow food, supports organic gardening curriculum and sells produce at the University of Utah Farmers Market. By 2006, the university had also constructed the Spencer F. and Cleone P. Eccles Health Sciences Education Building, the first LEED-certified building which incorporated efficient use of energy and water, waste reduction and consideration of human health in the building’s design, construction, operations and maintenance.

These efforts were significant, but they weren’t yet part of a unified drive to implement sustainability on campus.

2007-2014: The Sustainability Office Forms

Divergent efforts began to coalesce in 2007, with the formation of the Sustainability Office (then called the Sustainability Resource Center), underneath Facilities Management.

Something like the Sustainability Office doesn’t happen without visionaries. The idea was originally proposed by students, but it was City & Metropolitan Planning faculty member Craig B. Forster who led the effort to make the idea work. Forster, who became the first director, was a natural fit with sustainability. He was interested in facilitating interdisciplinary research and bridging the gaps between science and public policy. He also had a talent for bringing people together and was deeply involved with the local community. In the summertime, he was often seen at the Pioneer Park farmers’ market playing cimbalom (a kind of hammered dulcimer) with his Hungarian Táncház band.

With only one full-time staff member and some volunteers, the Sustainability Office got to work organizing recycling at football games, installing the first solar panels on campus, setting up a campus farmers’ market, making sure that sustainability was included in the Campus Master Plan and developing a student fee to support student-led sustainability projects through the Sustainable Campus Initiative Fund. On Earth Day 2008, University of Utah President Michael K. Young signed the American College & University President’s Climate Commitment, dedicating the university to achieving carbon neutrality by 2050. The year ended in tragedy, though, when Forster died in a hiking accident.

Despite the loss of Forster, the university persevered with a vision for making sustainability integral to its operations. In 2009, after a competitive nationwide search, architect and planner Myron Willson was appointed the next director of the office.

2014-2017: Sustainability is Integrated into Academic Affairs

In 2014, the Sustainability Office made another big change to adapt to the growing campus. Originally, the office was on the organizational chart under Facilities Management with the idea that university employees would take care of recycling, xeriscaping, transit passes and such.

But then an interesting thing happened. Students were getting more and more interested in sustainable change. They wanted to try out their ideas, and the campus was the most natural place for them to do so. With the Sustainable Campus Initiative Fund (SCIF) now up and running, grants were available for student-led sustainability projects. The university had become a living laboratory for sustainable change, and sustainability-focused courses had popped up in academic departments all over campus. With so much involvement in interdisciplinary research and learning, the Sustainability Office moved into Academic Affairs, and Associate Vice President for Faculty and law professor Amy Wildermuth was named Chief Sustainability Officer in 2014. Wildermuth added Adrienne Cachelin, Environmental & Sustainability Studies faculty to the team as the director of sustainability education to guide burgeoning sustainability education efforts across campus.

Under Wildermuth, the Sustainability Office also joined forces with the Global Change and Sustainability Center (GCSC), founded in 2010 by biology professor Jim Ehleringer to foster interdisciplinary sustainability research. Nowadays, under Director Brenda Bowen, Geology & Geophysics faculty, the 129 faculty affiliates of the GCSC represent nine colleges. The center supports graduate students through grants and fellowships, offers an interdisciplinary research seminar series, faculty networking opportunities, assistance for large interdisciplinary grants and core courses in the Interdisciplinary Graduate Certificate in Sustainability curriculum.

Sustainability is You: The Next 10 Years

Today, the Sustainability Office team includes fourteen faculty and staff members as well as numerous student interns and volunteers and continues to expands its scope. Though much progress has been made, sustainability is an ongoing effort, and there is still a lot of work to do.

This year, the Sustainability Office celebrates 10 years of dedicated efforts of faculty, staff and students from across campus. The next 10 years of sustainability at the university will be guided by those in our community who get and remain involved. We invite you to be part of this important work. Join us at one of our fall events to learn about ways you can help make the U a better place for all who live, work and play here.

STABILIZING ENERGY STORAGE

Originally posted at UNews on Feb. 21 2017.

Because the sun doesn’t always shine, solar utilities need a way to store extra charge for a rainy day. The same goes for wind power facilities, since the wind doesn’t always blow. To take full advantage of renewable energy, electrical grids need large batteries that can store the power coming from wind and solar installations until it is needed. Some of the current technologies that are potentially very appealing for the electrical grid are inefficient and short-lived.

University of Utah and University of Michigan chemists, participating in the U.S. Department of Energy’s Joint Center for Energy Storage Research, predict a better future for a type of battery for grid storage called redox flow batteries. Using a predictive model of molecules and their properties, the team has developed a charge-storing molecule around 1,000 times more stable than current compounds. Their results are reported today in the Journal of the American Chemical Society.

“Our first compound had a half-life of about eight-12 hours,” says U chemist Matthew Sigman, referring to the time period in which half of the compound would decompose. “The compound that we predicted was stable on the order of months.”

Not your ordinary battery

For a typical residential solar panel customer, electricity must be either used as it’s generated, sold back to the electrical grid, or stored in batteries. Deep-cycle lead batteries or lithium ion batteries are already on the market, but each type presents challenges for use on the grid.

PHOTO CREDIT: Image by Sharmila Samaroo/University of Michigan.

PHOTO CREDIT: Image by Sharmila Samaroo/University of Michigan. A diagram of a redox flow battery. An energy source, in this case a solar panel, provides the energy to the central cell to charge the battery. The charge is held in tanks of electrolytes that are pumped back into the cell to discharge the battery.

All batteries contain chemicals that store and release electrical charge. However, redox flow batteries aren’t like the batteries in cars or cell phones. Redox flow batteries instead use two tanks to store energy, separated by a central set of inert electrodes. The tanks hold the solutions containing molecules or charged atoms, called anolytes and catholytes, that store and release charge as the solution “flows” past the electrodes, depending on whether electricity is being provided to the battery or extracted from it.

“If you want to increase the capacity, you just put more material in the tanks and it flows through the same cell,” says University of Michigan chemist Melanie Sanford. “If you want to increase the rate of charge or discharge, you increase the number of cells.”

Current redox flow batteries use solutions containing vanadium, a costly material that requires extra safety in handling because of its potential toxicity. Formulating the batteries is a chemical balancing act, since molecules that can store more charge tend to be less stable, losing charge and rapidly decomposing.

Molecular bumper cars

Sanford began collaborating with Sigman and U electrochemist Shelley Minteer through the U.S. Department of Energy’s Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub dedicated to creating next-generation battery technologies. Sanford’s lab developed and tested potential electrolyte molecules, and sought to use predictive technology to help design better battery compounds. Minteer contributed expertise in electrochemistry and Sigman employed a computational method, which uses the structural features of a molecule to predict its properties. A similar approach  is widely used in drug development to predict the properties of candidate drugs.

The team’s work found that a candidate compound decomposed when two molecules interacted with each other. “These molecules can’t decompose if they can’t come together,” Sanford says. “You can tune the molecules to prevent them from coming together.”

Tuning a key parameter of those molecules, a factor describing the height of a molecular component, essentially placed a bumper or deflector shield around the candidate molecule.

The most exciting anolyte reported in the paper  is based on the organic molecule pyridinium. It contains no metals and is intended to be dissolved in an organic solvent, further enhancing its stability. Other compounds exhibited longer half-lives, but this anolyte provides the best combination of stability and redox potential, which is directly related to how much energy it can store.

Sharing skills to build batteries

Sigman, Minteer and Sanford are now working to identify a catholyte to pair with this and future molecules. Other engineering milestones lay ahead in the development of a new redox flow battery technology, but determining a framework for improving battery components is a key first step.

“It’s a multipart challenge, but you can’t do anything if you don’t have stable molecules with low redox potentials,” Sanford says. “You need to work from there.”

The team attributes their success thus far to the application of this structure-function relationship toolset, typically used in the pharmaceutical industry, to battery design. “We bring the tools of chemists to a field that was traditionally the purview of engineers,” Sanford says.

Find the full study here.

Funding for the project was provided by the Joint Center for Energy Storage Research, a Department of Energy Innovation Hub supported by DOE’s Office of Science.

The Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub, is a major partnership that integrates researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology. Led by the U.S. Department of Energy’s Argonne National Laboratory, partners include national leaders in science and engineering from academia, the private sector, and national laboratories. Their combined expertise spans the full range of the technology-development pipeline from basic research to prototype development to product engineering to market delivery.

Cover Photo: By Leaflet (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)%5D, via Wikimedia Commons.

CERTIFY YOUR GREEN OFFICE

Bianca Greeff, Graduate Assistant.

14 departments across the University of Utah are currently participating in the Sustainability Office’s Green Office Certification, with six already certified.

Green Office Certification helps the University achieve its sustainability goals through inviting broad participation. The program is managed by Karren Nichols, Administrative Officer in the Sustainability Office.

Karren Nichols reviewing office initiatives.

“Green Office Certification helps colleges and departments foster and adopt more sustainable practices within the workplace,” Nichols explained.

Any college or department on campus can participate in Green Office Certification. The process begins with a certification form. After completing the form, it is submitted to Nichols, at karren.nichols@utah.edu. Upon receipt of the form, Nichols coordinates a green-office specialist to walk through the space.

The benefit of having a specialist walk through your space is that they might notice something you overlooked on your form. The specialist can identify further cost or resource saving changes that can be made, as well as noticing what eco-friendly behavior may already be in place for the office.

“Sustainability has been growing over the last eight years on campus,” Nichols explained. “A lot of people are already engaging in eco-friendly behavior, and they just don’t realize that is what it is.”

Depending on the score, offices are awarded a bronze, silver, or gold certification. The green-office specialists works with each office to make sure they meet at least the bronze level. After initial certification, the specialists will continue to help offices until obtain gold.

Myron Willson, Deputy Chief Sustainability Officer, and Karren Nichols presenting the Lowell Bennion Community Service Center their Gold certification.

The College of Humanities Dean’s Office and the Second Language Teaching & Research Center are certified bronze. City & Metropolitan Planning is certified silver. Gold certifications include the College of Architecture + Planning Dean’s Office, the Lowell Bennion Community Service Center, and the Office of Sponsored Projects.

By helping offices meet specific minimum requirements around, and related to, recycling, green purchasing practices, transportation, energy, and other common office activities, the program is also helping the University of Utah meet its goal of becoming carbon neutral by 2050.

“By shifting daily behaviors, we can work together to make a big impact on campus as well as in the community,” Nichols said.

By collectively leveraging our individual office habits, together we can become more sustainable.

Certify your office today.