10 YEARS OF SUSTAINABILITY

Originally posted in @theU on Sept. 22, 2017.

By Amy Brunvand, Sustainability Librarian.

The University of Utah Sustainability Office turns 10 years old this year, and it is truly amazing to look around campus and realize how much has changed for the better in the past decade. Nowadays, there are campus vegetable gardens with ripe tomatoes and hives of buzzing bees, solar parking canopies that provide both power and shade, electric vehicles plugged into charging stations, crowds of students arriving on TRAX light-rail trains, tasty vegetarian and vegan options on offer at the cafeteria, water bottle refilling stations in most buildings, and plenty of recycling bins to divert waste from the landfill.

The curriculum has changed, too. Undergraduates can earn a number of sustainability-focused degrees and minors, while graduate students in any field can add an Interdisciplinary Graduate Certificate in Sustainability to their credentials.

Over the years, students, staff and faculty have all contributed to a vision of making the University of Utah a better place. In September, the Sustainability Office will celebrate these milestones and achievements with a Sustainability Showcase highlighting current programs and resources, and a special presentation by Dr. Vandana Shiva who advocates for traditional agriculture, and environmental and social justice issues worldwide.

Join us at the Sustainability Showcase on Friday, Sept. 29, 11 a.m.-2 p.m. on the Marriott Library Plaza for food, live music and fun activities. Later this fall, Dr. Vandana Shiva will present a public lecture at Libby Gardner Concert Hall on Saturday, Oct. 20, 7:30 p.m., as part of UtahPresents 2017-18 season. Tickets are available now.

1991-2006: Early Beginnings of Sustainability

Ten years ago, the transition to campus sustainability had barely begun, although a few major milestones laid the foundation. The first big sustainable change was a side effect of trying to cope with limited parking; in 1991, Commuter Services launched the Ed Pass program to give a UTA transit pass to every student and employee on campus. Not only did this encourage people to leave their cars at home, it helped expand Salt Lake City’s light rail network when enthusiastic transit riders from the U showed up at City Council meetings to press for construction of the Red Line TRAX, which opened in 2001.

In 1996, a biology professor named Fred Montague started an “unofficial” campus vegetable garden to teach students about his ideas for ecological gardening. That unofficial garden became the foundation of today’s Edible Campus Gardens, which teaches volunteers how to grow food, supports organic gardening curriculum and sells produce at the University of Utah Farmers Market. By 2006, the university had also constructed the Spencer F. and Cleone P. Eccles Health Sciences Education Building, the first LEED-certified building which incorporated efficient use of energy and water, waste reduction and consideration of human health in the building’s design, construction, operations and maintenance.

These efforts were significant, but they weren’t yet part of a unified drive to implement sustainability on campus.

2007-2014: The Sustainability Office Forms

Divergent efforts began to coalesce in 2007, with the formation of the Sustainability Office (then called the Sustainability Resource Center), underneath Facilities Management.

Something like the Sustainability Office doesn’t happen without visionaries. The idea was originally proposed by students, but it was City & Metropolitan Planning faculty member Craig B. Forster who led the effort to make the idea work. Forster, who became the first director, was a natural fit with sustainability. He was interested in facilitating interdisciplinary research and bridging the gaps between science and public policy. He also had a talent for bringing people together and was deeply involved with the local community. In the summertime, he was often seen at the Pioneer Park farmers’ market playing cimbalom (a kind of hammered dulcimer) with his Hungarian Táncház band.

With only one full-time staff member and some volunteers, the Sustainability Office got to work organizing recycling at football games, installing the first solar panels on campus, setting up a campus farmers’ market, making sure that sustainability was included in the Campus Master Plan and developing a student fee to support student-led sustainability projects through the Sustainable Campus Initiative Fund. On Earth Day 2008, University of Utah President Michael K. Young signed the American College & University President’s Climate Commitment, dedicating the university to achieving carbon neutrality by 2050. The year ended in tragedy, though, when Forster died in a hiking accident.

Despite the loss of Forster, the university persevered with a vision for making sustainability integral to its operations. In 2009, after a competitive nationwide search, architect and planner Myron Willson was appointed the next director of the office.

2014-2017: Sustainability is Integrated into Academic Affairs

In 2014, the Sustainability Office made another big change to adapt to the growing campus. Originally, the office was on the organizational chart under Facilities Management with the idea that university employees would take care of recycling, xeriscaping, transit passes and such.

But then an interesting thing happened. Students were getting more and more interested in sustainable change. They wanted to try out their ideas, and the campus was the most natural place for them to do so. With the Sustainable Campus Initiative Fund (SCIF) now up and running, grants were available for student-led sustainability projects. The university had become a living laboratory for sustainable change, and sustainability-focused courses had popped up in academic departments all over campus. With so much involvement in interdisciplinary research and learning, the Sustainability Office moved into Academic Affairs, and Associate Vice President for Faculty and law professor Amy Wildermuth was named Chief Sustainability Officer in 2014. Wildermuth added Adrienne Cachelin, Environmental & Sustainability Studies faculty to the team as the director of sustainability education to guide burgeoning sustainability education efforts across campus.

Under Wildermuth, the Sustainability Office also joined forces with the Global Change and Sustainability Center (GCSC), founded in 2010 by biology professor Jim Ehleringer to foster interdisciplinary sustainability research. Nowadays, under Director Brenda Bowen, Geology & Geophysics faculty, the 129 faculty affiliates of the GCSC represent nine colleges. The center supports graduate students through grants and fellowships, offers an interdisciplinary research seminar series, faculty networking opportunities, assistance for large interdisciplinary grants and core courses in the Interdisciplinary Graduate Certificate in Sustainability curriculum.

Sustainability is You: The Next 10 Years

Today, the Sustainability Office team includes fourteen faculty and staff members as well as numerous student interns and volunteers and continues to expands its scope. Though much progress has been made, sustainability is an ongoing effort, and there is still a lot of work to do.

This year, the Sustainability Office celebrates 10 years of dedicated efforts of faculty, staff and students from across campus. The next 10 years of sustainability at the university will be guided by those in our community who get and remain involved. We invite you to be part of this important work. Join us at one of our fall events to learn about ways you can help make the U a better place for all who live, work and play here.

Another Year in SCIF

Another Year in SCIF

By: Emerson Andrews, SCIF Coordinator.

One more academic year has passed us by, and as people get ready for their summer adventures, now is a good time to reflect on some of the wonderful work that students did this year through the Sustainable Campus Initiative Fund (SCIF). Since the creation of SCIF, the money available for projects has never been fully spent, however, 2017-18 marks a big change as all SCIF funding for this year was allocated to some awesome projects.

The following three projects are a small cross section of all the wonderful work that has happened through student energy and SCIF support this year. For detailed information about all SCIF projects, please stay tuned for the 2017-2018 SCIF Annual Report, which summarizes every project that was funded.

Burned Out – $262.14

  • This grant funded the construction of an interactive sculpture installation that lit up when viewers interacted with it on the second floor of the Marriott Library. This sculpture encouraged people to discuss energy usage, indirectly bringing awareness to carbon dioxide emissions created by power plants which generate electricity by burning fossil fuels. The piece consisted of black structures – evoking industrial facilities – and had handles placed at varying points, which viewers were encouraged to touch. Cranking the handle hard enough caused a certain portion of the sculpture to light up. All four handles must be turned by different people at the same time in order to see the entire piece light up. This piece encouraged people to engage with energy production, and both physically and mentally reflect our current global crisis.

Food Recovery Network Operations Coordinator – $4,953.05  

  • This grant funded the pay and equipment necessary for a Food Recovery Network Coordinator. The coordinator recorded food waste data and gave it to Dining Services so that Dining Services could adjust their production scheduling and eliminate unnecessary waste at pre-production. This data included up-to-date records of inventory and preferred foods for delivery based on student/client preference and acquisition. Additionally, this process provided a larger variety of foods while giving students and clients healthier alternatives to existing dry and canned food options. All of these objectives helped to reduce the amount of edible food waste in the university’s waste stream; recorded hard data with respect to specific aspects of the campus food systems, and provided hungry students with healthy food options.

Sustainable Tech for Design Build Bluff – $35,535.00

  • This grant funded the purchase and acquisition of appropriate sustainable technologies to be used on the Bluff Campus. These technologies increased energy and operations efficiency, specifically through the use of a solar PV array – arrangement of solar panels – on an existing building, and an earth block press and non-toxic insulation machine for future university building projects on the Bluff campus and throughout the region. These are all demonstrable technologies in an area that is a confluence of students and locals — both who could benefit from exposure to, and training in, the workings of these technologies. In addition to their practical applications on a regional scale, these operational improvements bring sustainable outcomes to a U of U remote campus.

These three projects reflect the power of the Sustainable Campus Initiative Fund to approach sustainability from multiple perspectives. SCIF truly allows students to experiment on the living, learning, laboratory that is campus through whichever lens they study. This ability is unique to SCIF and benefits everyone on campus.

For more information regarding SCIF, check out the website and please contact the SCIF Coordinator: Emerson.andrews@utah.edu

RECYCLE GLASS ON CAMPUS

Emerson Andrews, Sustainable Campus Initiative Fund coordinator. Originally posted on Jan. 9 2017. 

Glass recycling has arrived at the University of Utah thanks to the combined efforts of three students, Facilities Management and the Sustainable Campus Initiative Fund, or SCIF.

Fifty bins will be placed in buildings during the beginning of the spring 2017 semester and available for use by students, faculty and staff. At least one glass recycling bin will be placed in all major buildings across campus with a few extra in high-traffic places like the Union and Marriott Library.

While taking Global Changes in Society, a course offered by the Global Change & Sustainability Center, GCSC, three environmental humanitiesgraduate students proposed a glass recycling pilot project. Jennifer Lair, Nicole Cox and Carissa Beckwith wanted to implement an on-campus glass recycling bin program utilizing the Momentum Recycling facility in Salt Lake City.

They took their idea from the classroom straight to Facilities Management and the Sustainable Campus Initiative Fund. Joshua James, the university’s campus recycling coordinator, provided both the support and knowledge to implement glass recycling on campus. He helped students develop a plan that could make glass recycling a continued service with space to grow.

“We had a great opportunity open up with Momentum making a glass recycling facility in town,” James commented.

Once the plan was in place, it was a matter of finding the money to pay for it. The students secured the support of both SCIF and the GCSC to raise the $10,000 necessary for the project. These funds were used to purchase bins, install them on campus and develop a schedule for collection and drop-off. This project illustrates the power of a resource like SCIF in the hands of students.

“The GCSC class provided us with the time, space and support we needed to propose and implement the glass recycling initiative on campus,” Beckwith commented. “SCIF funding was instrumental to kick-starting this project.”

If the bins work well, the glass recycling program will grow in the future. It is important to remember that glass can only be recycled in the glass recycling bins — glass in other recycling bins presents a hazard to custodial staff.

“It’s important to continue to develop the program. But in order to do that, people need to make sure that glass goes into the correct bin.” James continued, “Glass going into the normal recycling stream could cause a lot of problems.”

These bins are only big enough for faculty, students and staff to recycle glass acquired here on campus. If people would like to recycle their glass from home, there are two public drop-off bins: One bin is located by student housing in Fort Douglas, and the other is located just off of Guardsman Way.

“I hope that glass recycling on campus catches on quickly with students, staff and faculty,” Beckwith concluded. “It is an easy action that can provide a huge payoff for the planet!”

 

SEMINAR: GREENLAND ICE SHEET MAY HAVE LARGER THAN EXPECTED IMPACT ON SEA LEVEL

By: Liz Ivkovich, Sustainability Office.

New research suggests that the Greenland Ice Sheet is far less stable than current climate models predict, which could mean those models are severely underestimating potential sea level rise.

The ice sheet contains the equivalent of 24 feet of global sea level rise if it melts.

Joerg Schaefer, a paleoclimatologist at Columbia University’s Lamont-Doherty Earth Observatory, will present this new finding and why it matters at the GCSC Seminar Series on Jan. 17 from 4–5 p.m. in 210 ASB.

The Greenland Ice Sheet (GIS) is part of Earth’s cryosphere, the frozen water component of our climate system. The cryosphere plays a vital role in regulating planet temperature, sea levels, currents, and storm patterns. Over Earth’s billions of years, elements of the cryosphere have melted and re-frozen. Understanding how these elements have acted in geologic time scales and during prior periods of climate change enables scientists to model how Earth’s systems will react as the climate warms in the future.

Current climate models, including those developed by the Intergovernmental Panel on Climate Change, are based on the assumption that Greenland’s ice sheet had been relatively stable over the past several million years. The stability of the GIS is under debate. If the GIS was frozen in the past when natural ‘forcing’ (causes) warmed the globe, that means it could stay stable despite human-caused global warming. Unfortunately, Schaefer’s research finds direct evidence from bedrock underneath the ice that the GIS is more at risk of melting than scientists expected.

“We came up with the worrisome result that the Greenland Ice Sheet was actually rather dynamic under natural forcing, which basically immediately means our models overestimate stability with respect to ongoing climate change…” Schaefer explained. “[The prior melting] was due to periods of natural forcing. We will overtake this by anthropogenic forcing very soon, and we just don’t have an argument to expect that the Greenland Ice Sheet will not go again.”

A map of the Greenland Ice Sheet. By Eric Gaba, CC BY-SA 3.0, via Wikimedia Commons

Schaefer and his Lamont-Doherty Earth Observatory Cosmogenic Dating Group’s discovery is the result of groundbreaking direct evidence from rock underneath the ice’s surface. Schaefer said the researchers asked the rock a question: “Have you ever been exposed to open sky?”

The rock Schaefer is referring to is a sample of bedrock from several miles below the ice sheet, obtained in the early 1990s. It took researchers nearly five years to drill out these rocks; the deepest ice core recovered in the world at that time. The sample is so precious that Schaefer and his predecessors didn’t want to work on them until they knew that the research method would produce accurate results. Enter cosmogenic nuclide technique.

Cosmogenic nuclide technique counts the cosmogenic nuclides in the near surface of the rock. These isotopes are produced when extraterrestrial radiation—cosmic rays—trigger a reaction in rock. The reaction produces radioactive beryllium-10 and aluminum-26 isotopes.

“These nuclides are characteristic for cosmic rays, so whenever you measure the nuclides in excess, you know that it’s due to exposure to open sky,” Schaefer explained. “If you measure these nuclides underneath an ice sheet, you know that the ice was gone.”

Schaefer describes these isotopes as sisters that always occur and decay in a specific ratio to each other. Knowing this relationship enables the scientists to count how long the rock was exposed to open sky, and when it was covered again with ice. Though the process is theoretically simple, it is very complicated to measure. It yields an unprecedented direct record of how the ice has melted and refrozen in the past.

The instability of the ice sheet has implications for policy. Translating this, and other climate science research into governance, is what Schaefer calls the “biggest frontier in climate science.”

“Many of the scientific findings are robust and clear, and now the next step is we have to become much better in transferring that into real decisions,” Schaefer said.

Learn more at Schaefer’s lecture, “Ice sheets, glaciers and society: Past and present cryospheric change and its impact on society,” on Jan. 17 at 4 pm in 210 ASB.

Cover Photo: The Greenland Ice Sheet. By Christine Zenino, CC BY 2.0, via Wikimedia Commons.