Sustainable Sanitary Pads

Originally posted on May 29, 2017.

By Vince Horiuchi, public relations associate, University of Utah College of Engineering

Each year, nearly 20 billion sanitary pads, tampons and applicators are dumped into North American landfills every year, and it takes centuries for them to biodegrade inside plastic bags, according to a 2016 Harvard Business School report. Additionally, it requires high amounts of fossil fuel energy to produce the plastic for these products, resulting in a large carbon footprint.

PHOTO CREDIT: Ashlea Patterson

The SHERO Pad, developed by a team of University of Utah materials science and engineering students, is a new feminine hygiene pad that is 100 percent biodegradable and made from all natural materials. It consists of four layers and can break down in as little as 45 days.

But a team of students led by University of Utah materials science and engineering assistant professor (lecturer) Jeff Bates has developed a new, 100-percent biodegradable feminine maxi pad that is made of all natural materials and is much thinner and more comfortable than other similar products.

The SHERO Pad uses a processed form of algae as its super-absorbent ingredient, which is then covered with cotton and the same material that makes up tea bags. The result is a maxi pad that is effective, comfortable to wear and can break down anywhere from 45 days to six months.

“This is novel in comparison to other biodegradable options out there for pads,” said Amber Barron, a University of Utah junior in materials science and engineering who is on the team of four students. “Most are really bulky because they don’t have a superabsorbent layer.”

The need for something like the SHERO Pad originally came from SHEVA, a nonprofit advocacy group for women and girls in Guatemala, which turned to Bates because it was looking for a sustainable solution for feminine hygiene waste. One of Bates’ area of research is in hydrogels, which are water-absorbing polymers.

“In Guatemala, there’s no public sanitation system. All the rivers are black because they are so polluted,” Bates says. “So there really is a genuine need for people in Guatemala to have biodegradable options.”

Part of Bates’ solution came one night while feeding his 5-year-old daughter.

“One day we were eating dinner with white rice, and my daughter spilled it all over the floor,” he says about that night two years ago. “The next morning, when I was cleaning it up, it was all dry and crusted. I drove to work and thought, ‘What was it about rice that does that?’”

That question of how rice hydrates and dehydrates began a two-year process of searching for the right natural materials for the feminine pad, which included testing with different leaves, such as banana leaves, and forms of cotton.

Bates, Barron and the rest of the team — which includes sophomore students, Sarai Patterson, Ashlea Patterson and Ali Dibble — ultimately developed the SHERO Pad, which is made up of four layers: An outer layer of raw cotton similar to a tea bag to repel liquid, a transfer layer of organic cotton to absorb the liquid and pull it from the outer layer, the super-absorbent layer made of agarose gel (a polymer from brown algae), and a final layer made of a corn-based material that keeps the moisture inside and prevents leakage.

While there are other similar sustainable feminine pads on the market today, they either use a hydrogel that is not 100 percent biodegradable or they use thicker layers of natural cotton that are uncomfortable to wear, Barron says. Another advantage to the SHERO Pad is that it can easily be manufactured in smaller villages using locally sourced materials and without sophisticated tools, just common presses and grinding stones, Bates says.

While the team originally developed the SHERO Pad for users in developing countries such as Guatemala, Bates and the students also will start selling the product in the U.S. for environmentally conscious women. A working prototype has been produced, and they have launched a startup company based in Bountiful, Utah. They hope to have products in Guatemala and on U.S. store shelves within a year.

RECYCLE GLASS ON CAMPUS

Emerson Andrews, Sustainable Campus Initiative Fund coordinator. Originally posted on Jan. 9 2017. 

Glass recycling has arrived at the University of Utah thanks to the combined efforts of three students, Facilities Management and the Sustainable Campus Initiative Fund, or SCIF.

Fifty bins will be placed in buildings during the beginning of the spring 2017 semester and available for use by students, faculty and staff. At least one glass recycling bin will be placed in all major buildings across campus with a few extra in high-traffic places like the Union and Marriott Library.

While taking Global Changes in Society, a course offered by the Global Change & Sustainability Center, GCSC, three environmental humanitiesgraduate students proposed a glass recycling pilot project. Jennifer Lair, Nicole Cox and Carissa Beckwith wanted to implement an on-campus glass recycling bin program utilizing the Momentum Recycling facility in Salt Lake City.

They took their idea from the classroom straight to Facilities Management and the Sustainable Campus Initiative Fund. Joshua James, the university’s campus recycling coordinator, provided both the support and knowledge to implement glass recycling on campus. He helped students develop a plan that could make glass recycling a continued service with space to grow.

“We had a great opportunity open up with Momentum making a glass recycling facility in town,” James commented.

Once the plan was in place, it was a matter of finding the money to pay for it. The students secured the support of both SCIF and the GCSC to raise the $10,000 necessary for the project. These funds were used to purchase bins, install them on campus and develop a schedule for collection and drop-off. This project illustrates the power of a resource like SCIF in the hands of students.

“The GCSC class provided us with the time, space and support we needed to propose and implement the glass recycling initiative on campus,” Beckwith commented. “SCIF funding was instrumental to kick-starting this project.”

If the bins work well, the glass recycling program will grow in the future. It is important to remember that glass can only be recycled in the glass recycling bins — glass in other recycling bins presents a hazard to custodial staff.

“It’s important to continue to develop the program. But in order to do that, people need to make sure that glass goes into the correct bin.” James continued, “Glass going into the normal recycling stream could cause a lot of problems.”

These bins are only big enough for faculty, students and staff to recycle glass acquired here on campus. If people would like to recycle their glass from home, there are two public drop-off bins: One bin is located by student housing in Fort Douglas, and the other is located just off of Guardsman Way.

“I hope that glass recycling on campus catches on quickly with students, staff and faculty,” Beckwith concluded. “It is an easy action that can provide a huge payoff for the planet!”