Are you up for the challenge?

The inversions that occur annually in many of Utah’s valleys are a natural outcome of our topography. However, the pollutants emitted into the air aren’t natural. In fact, they are dictated by our decisions and actions.

No one wants bad air, but unfortunately our lifestyles and transportation choices add particulate matter to the inversion, resulting in poor air quality and contributing to worsening health. Let’s do something about it.

Throughout February, the University of Utah will compete in the statewide Clear the Air Challenge, which pushes for a reduction in single-occupant vehicles to reduce automobile emissions. If you’re wondering whether driving less can make a difference, the answer is absolutely, especially if we all make a commitment. Roughly half of the particulate matter that dirties our winter air comes from mobile sources like our personal vehicles.

Together, we can help clear the air. Here’s how:

  1. Sign up now for the University of Utah team, which is always among the top teams in the competition.
  2. Log all your trips from riding transit, biking, walking, scooting or carpooling into the challenge tracker to see your saved emissions, dollars and even calories.
  3. Win some cool prizes. Those who participate will be eligible for prizes provided by Commuter Services.

Technology is here to help

Two apps can help you be an all-star in the Clear the Air Challenge:

  • If you are trying out public transportation for the first time, download Transit to help with trip planning. This app can help plan trips on FrontRunner, TRAX and buses in the UTA system, and even sends you alerts if something changes. It also connects with other transportation modes, including GREENbike and popular rideshare services. Plus, it can be used in more than 200 cities worldwide.
  • To automate your trip logging in the challenge, we also recommend downloading Commute Tracker. The app will use your mobile phone to determine your transportation mode choices and log it in the challenge. Learn how to connect the app to your challenge profile here.

Find a commute companion

A picture is worth a thousand words. As part of the Clear the Air Challenge, the Sustainability Office and Commuter Services are sponsoring an Instagram Challenge. Taking public transit for the first time can be intimidating. If you are a regular transit user and have a friend who hasn’t made the leap, help them plan out their new commute and ride along. Post photos with your new commute companion (you know, your bus buddy, your carpool comrade, your train mate) to be entered to win prizes. Use #CommuteCompanion and tag @SustainableUofU in Instagram to be eligible to win. Winners will be selected each week in February.

Love your bike commute

Bicycling is an emissions-free way to commute (OK, except for exhaled CO2), plus it provides great exercise. On Thursday, Feb. 13, look for tents on your ride home with special biker giveaways. Not sure about your route? If your commute starts on the west side of campus, check out the new University to Downtown Bikeway, a mix of painted bike lanes, downhill shared lanes (also called sharrows) and special markings for crossing intersections. If your commute begins east, north, or south of campus, the Salt Lake City/County Bikeways Map is an excellent guide. Got a flat? Visit the Campus Bike Shop for all your repair needs.

Don’t forget your university services

The University of Utah has many tools to help you get out of your personal vehicle. Your UCard is your pass to ride public transit—make sure to tap on and off. Tapping off helps UTA determine how frequently buses need to run. Already on campus and trying to get around? Commuter Services’ shuttles can get you there. Go to uofubus.com for the live shuttle tracker. On nice days use the U Campus Map to find walking directions.

Print & mail recognized

This article, originally published in @theu on August 9, 2019, was written by Corinne Smart,
University Print & Mail Services.

In an industry based on using paper, sustainable practices are an ongoing challenge for organizations like University Print & Mail Services. But taking that challenge on has proved successful for the department, which has just been awarded bronze certification in the Sustainability Office’s Green Office Program.

Conscious of the resources that it uses daily, Print & Mail felt compelled to follow best practices for sustainability and help support the university’s mission and goals. This commitment started the department down the path toward achieving the Green Office Certification and completing the requirements was the next step. ­

The Sustainability Office observes how campus work environments negatively impact our natural environment. To instigate change, they created the Green Office Certification, a program to teach campus ways to integrate sustainability practices into the workplace through sustainable choices. The Green Office Program has three tiers of certification: bronze, silver and gold. Once departments register, they receive a Green Office Checklist as a guide for success. To celebrate certifications, the Sustainability Office advertises the newly certified department’s achievements on their social media outlets.

Over the course of many months, the Print & Mail team worked to identify areas of improvement and correspondingly, began to check off boxes from the sustainability certification list. Some items were as simple as posting stickers to remind colleagues to turn off office lights at the end of the day; others took more effort, requiring continuous dedication from the entire Print & Mail team to carry the effort forward.

The Green Office Program has done more than just help Print & Mail conserve energy and reduce waste, it has influenced Print & Mail’s team to adopt a more sustainable lifestyle. Team members have been seen bringing in office plants, making special trips to the recycle bin, using multi-use water bottles instead of disposables and taking public transit to work instead of driving.

For those considering joining the certification program, Print & Mail’s Green Office Educator Wendy Covert has some advice: “Come up with a Green Team. It is much easier to get buy-in from the department as a whole if other people are invested.”

At Print & Mail, every team member had a part to play in being more sustainable, from the department purchaser being willing to buy green supplies to printing staff remembering to put scraps in recycling bins. The support and willingness of Print & Mail’s entire team were vital to the department’s success in acquiring bronze certification.

Despite its roots in printing, Print & Mail has shown that even in the paper business, being sustainable is more attainable than you think. Beyond their commitment to helping the planet, the team is dedicated to helping the campus community by serving as an excellent resource for eco-friendly paper. Print & Mail prints university business cards on 100% PCW recycled paper and can order recycled paper for your department. Visit Print & Mail online or call 801-581-6171.

New Directions for Environmental Justice

By Nicholas Apodaca, graduate assistant, Sustainability Office

Many of us who care about climate change and environmental justice take action in our daily lives to do our part: we recycle, use sustainable products, use public transportation or eat locally grown food. Yet often environmental problems play out at a larger scale, and while our personal actions can help in small ways, it is important to understand the forces at work in creating environmental hazards and injustice from the start. If we know where injustice begins, we can begin to make a change for the better.

Professor David Pellow of the University of California, Santa Barbara, is exploring new directions in environmental justice in his research. On April 16 from 4 – 5 p.m. in ASB 210, join him for his lecture, “Toward a Critical Environmental Justice: Exploring State Violence & the Settler Colonial Conflicts.”

Pellow began his research in Sociology and Environmental Justice in the 1990s when he completed his Ph.D. dissertation in Sociology,  “Black workers in green industries: the hidden infrastructure of environmental racism,” at Northwestern University. He has since taught at Colorado, UC San Diego, and Minnesota, before arriving at UC Santa Barbara in 2015. There he is the Dehlsen Professor of Environmental Studies and Director of the Global Environmental Justice Project.

In his lecture, Pellow will explore new directions in the theoretical side of environmental sociology.  He breaks it down into multiple approaches. First, he is attempting to further build on existing research that focuses on the intersection between environmental hazards and class, income, race, gender, citizenship and nationality. He sees these intersections as critical for developing nuanced solutions to the complex interactions that produce injustice. “[I am] trying to ask bigger questions about the role of government or the nation-state in producing and exacerbating environmental problems and environmental justice issues in the first place,” Pellow explains. The contradiction is one of “relying on some of the same institutions that are arguably creating the problem in the first place.”

Pellow is also concerned with questions of scale in environmental justice research. He sees environmental justice as an issue that affects us  individually as well as globally. “Environmental hazards regarding academic and policy analysis must be approached as multi-scalar,” argues Pellow. “What happens at the micro scale is almost always revealed to be linked the community or national scale.” As no environmental issues exist in a vacuum, local and regional issues are just as “global” in consequence as environmental injustice outside of the United States. Often, we can find problems in our own neighborhood. Pellow’s recent research on oil refineries located in residential areas of Richmond, California illustrates this well, showing how global economic dynamics can lead to visible environmental impacts on real people.

Lastly, Pellow will explore the ethics of environmental injustice research.”The kind of environmental research I’m doing seeks to question the expendability of ecosystems, of habitats, and of marginalized human populations,” Pellow says. Pellow believes that environmental sociology shouldn’t simply seek to expose injustice, but should fight these notions of expendability. “It’s really about declaring, loudly, the indispensability (of marginalized people). It’s about saying every voice counts. Otherwise, it’s not a democracy.”

Should you too believe that every voice counts in the fight against environmental injustice, and have an interest in the cutting edge of environmental sociology research, come to ASB 210 on April 16 at 4 PM for David Pellow’s GCSC Seminar Series lecture, “Toward a Critical Environmental Justice: Exploring State Violence & the Settler Colonial Conflicts.”

HEALTHIER CAMPUS INITIATIVE

Originally posted on @theU on March 8, 2019.

By Shawn Wood, communications specialist, University of Utah Communications

The University of Utah has adopted guidelines to promote better health on campus through nutrition, physical activity and programming over the next three years through the Healthier Campus Initiative sponsored by the Partnership for a Healthier America.

President Ruth V. Watkins signing the Healthier Campus Initiative.

L-R Jerry Basfor, Robin Marcus, President Watkins and Alexis Pearl Lee.

“I’m impressed with the work being done on campus,” said President Ruth V. Watkins, who signed the initiative on March 7, 2019. “I fully support doing whatever we can to encourage and educate our students, staff and faculty about the importance of engaging in healthy habits and the difference eating well, exercising regularly and taking care of their overall wellness will make throughout their lives.”

The Healthier Campus Initiative partners with 73 colleges and universities across the nation to advance healthy living. Each partner commits to meeting a majority of the guidelines developed by Partnership for a Healthier America in collaboration with some of the nation’s leading nutrition, physical activity and campus wellness experts.

By joining the initiative, the U has agreed to meet at least 23 separate guidelines in three categories: food and nutrition, physical activity and overall wellness programming.

A new campus wellness committee will guide the U’s work over the next three years. Members are charged with identifying and organizing campus activities that promote living well for students, staff, faculty and visitors. Supporting a One U approach, the broad-based committee will develop recommendations and direction of campus wellness initiatives and promote healthy living on campus and in the community.

The leaders on campus are Robin Marcus, chief wellness officer, U of U Health, and Jerry Basford, associate vice president, Student Affairs. They will steer the committee to support innovative projects led by students, staff and faculty across campus, ranging from sustainable gardens to food-focused courses and cooking workshops, to outdoor recreation trips and active transportation.

“We are thrilled to partner across our campus to continue our move toward the healthiest campus,” said Marcus. “The habits formed in college—including what they eat and how much physical activity they get—can last a lifetime.”

Committee members will include representatives from:

THE U’S IMPACT ON AIR QUALITY

Orginally posted on @theU on February 19, 2019.

By Myron Willson, Deputy Chief Sustainability Officer

The inversion season is upon us. This can be a time to point fingers at other polluters, but it should also be a time to recognize our own contributions to the murky haze and examine what steps we are taking to reduce emissions, including those emissions created by our actions at work and school.

So, what is our own university doing to reduce emissions? The university (health sciences and lower campus) is often likened to a small city with the total population of faculty, staff and students exceeding 60,000. This means that we have a fairly significant potential for creating emissions.

Fortunately, in addition to supporting faculty who are conducting research on various aspects of air quality and its impacts, the university is also proactively identifying areas for emissions reductions. In 2014, leadership authorized the first universitywide emissions review resulting in a report that provided recommendations for infrastructure and operational changes. Some areas identified:

  • Efficiency improvements and controls for large natural gas-powered boilers for building heat and hot water
  • Emergency diesel generator replacement
  • Phasing out dirty gas-powered landscaping equipment and replacing with electric options
  • Reducing and controlling chemicals and solvents used in laboratories, shops, etc.
  • Increasing sustainable commuting (including bicycles, public transit and car sharing)

As resources have allowed, many of these recommendations have already been implemented. Numerous changes have been driven by the dedicated staff in facilities’ Sustainability and Energy Management OfficePlanning Design and ConstructionCommuter Services, as well as the Occupational and Environmental Health and Safety Office.  At this point, nearly 50 percent of the recommendations have been or are being addressed.

  • Many equipment upgrades have been completed at the central heating plant and operation has been optimized for efficient fuel use.
  • The landscaping team is investing in the electrification of equipment and has implemented a moratorium on gas-fired equipment on yellow and red AQ days.
  • The “Better-Buildings Challenge” has been fully funded and will result in a 20 percent reduction of energy use per square foot by 2020.
  • Based on feedback from the Sustainability Office, the Clear the Air Challenge has shifted from July to February to include students among other campus commuters.
  • A full-time active transportation manager position has been established along with funding for infrastructure changes to support non-vehicular transport.

These actions are netting results. Even as the campus has grown (both in numbers of students and building square footage) total emissions have nearly leveled out or decreased. Close to 50 percent of our faculty, staff and students come to campus each day in something other than a single-occupant vehicle (making us very competitive with other Pac-12 institutions according to the latest reports).

Recent building projects on campus, such as Gardner Commons, have been designed to produce minimal emissions as the systems for heating and cooling are electric. Almost no on-site emissions are created. In addition, as the university continues to increase its purchase of renewable electricity (geothermal and solar), emissions due to the operations of buildings like Gardner Commons will be nearly zero.

Going forward, new federal and state requirements for business and institutions related to air quality are likely to become more restrictive. University leadership has asked staff to review the 2015 Air Quality Task Force Report, provide recommendations for further reductions and lead the way in reducing emissions. Stay tuned for an update.

These are all reasons for optimism. So, on days when our air isn’t fit to breathe and we make a conscious choice to reduce our own emissions, we can rest assured that the university is doing its part too.

Throughout February, take action on air quality by tracking your commute behaviors with the Clear the Air Challenge, a statewide competition that aims to reduce emissions from vehicles by promoting alternative transit options. Join the U team at travelwisetracker.com/s/university-of-utah.

Searching for ‘Soul’-utions

“Imagining Sustainable Futures: Collaborative ‘Soul’-utions for Earthly Survival.”

The Global Change and Sustainability Center (GCSC) seminar series presents a lecture by Giovanna Di Chiro, Lang Professor for Issues of Social Change at Swarthmore College.

By Nicholas Apodaca, graduate assistant, Sustainability Office

When we talk about sustainability, we might assume that progressive science policy would naturally uplift and strengthen all communities. Yet in the scientific and political discourse around sustainable practices, many marginalized groups are ignored, despite often being the most vulnerable in our current climate crises. If we are going to fight climate change and build a sustainable world, we need to analyze the contemporary environmental discourse and seek social justice for those most affected.

Giovanna Di Chiro, the Lang Professor for Issues of Social Change at Swarthmore College in Pennsylvania, has dedicated her career to intersectional scholarship on environmental justice, sustainability and public policy. On February 12, as part of the Global Change and Sustainability Center’s Seminar Series, Professor Di Chiro will share her innovative work in her lecture, “Imagining Sustainable Futures: Collaborative ‘Soul’-utions for Earthly Survival.”

Di Chiro began her academic career in biology, then pivoted towards social issues and completed an interdisciplinary Ph.D.  in Environment, Health, and Development at the University of California Santa Cruz. Since then, she has worked in marine and tropical biology, but has always pursued innovative interdisciplinary methods of connecting social justice to science and policy.

Teaching plays an important role in Di Chiro’s work. Drawing on her own experiences as a graduate student, Di Chiro approaches the classroom as a space for cooperation and dialogue. She draws on the pedagogy of Paulo Freire, a radical Brazilian priest who saw the classroom as a space for cultivating intellectuals through critical exploration of inequality and justice. Di Chiro has brought her innovative teaching to universities from Australia to California to Massachusetts, guiding students in community-based learning methods that revolve around those impacted by environmental injustice and creating inclusive spaces for marginalized voices in the classroom.

Di Chiro’s research has often focused on the critical intersection of science policy and social justice. Her first book, Appropriating Technology: Vernacular Science and Social Power, was published in 2004 to critical acclaim. The book traced various case studies around the appropriation of technologies for social justice efforts by activists and marginalized communities.

Currently De Chiro is working on an exciting project titled Embodied Ecologies: Building a Different World on Earth, which draws on feminist theory and activism to explore the lack of inclusion of marginalized peoples and community advocacy in contemporary environmental science and policy discussions.

Outside the classroom, Di Chiro has a long-standing commitment to working with underprivileged communities. While teaching at Mount Holyoke College in Massachusetts, she partnered with Nuestras Raíces, supporting the environmental justice organization’s mission through grant writing and developing local training programs around sustainable development, community agriculture and environmental health. Di Chiro was part of a community partnership that founded Energia, a community-based energy services corporation committed to the “triple bottom line:” employing low income community members, developing a management structure centered on a workers’ cooperative, and promoting energy conservation and general sustainability.

In Pennsylvania, Di Chiro has been working closely with community leaders in North Philadelphia to meet the sustainability needs of underserved and marginalized communities. This has led to the Serenity Soul-ar Collaborative, a unique partnership that pursues environmental justice for predominantly Black, low-income residents in the transition to sustainable green energy in the rapidly gentrifying North Philadelphia. By pushing for sustainable development that is locally-owned and tied to the strong cultural history of black communities in the area, the Serenity Soul-ar Collaborative intends to keep the “soul” in the transition to renewable energy sources.

In her lecture for the Global Change and Sustainability Center’s Seminar Series, “Imagining Sustainable Futures: Collaborative ‘Soul-tions for Earthly Survival,” Di Chiro will explore the challenges, successes, and lessons of her work in sustainability and social justice, and what it means for the future of our world. Come by ASB 210 on February 12 from 4 – 5 PM to learn more.

 

SHEDDING LIGHT

How the project benefited the library

Then: Lights in the Special Collections area were typically on 10-13 hours per day

Now: Lights now are only activated when there is activity and only in the area where that activity is occurring

Then: A compact fluorescent bulb is 54 watts, lasts about 10,000 hours and produces heat

Now: An LED bulb is 25 watts, lasts about 50,000 hours and doesn’t produce heat.

Originally posted on @theU on November 26, 2018.

By Brooke Adams, senior news writer, University of Utah Communications

Paper and photographs can’t take the heat. Or the light.

Both elements cause historic, fragile documents to breakdown over time, much to the dismay of curators of the Special Collections at the Marriott Library.

Enter a trio of students — Sierra Govett, Dillon Seglem and Yinhuan Huang — in search of a project for Jennifer J. Follstad Shah’s environmental and sustainability studies capstone class last spring.

Govett initially proposed they tackle excessive light use across campus, especially at times when buildings are unoccupied.

“A lot of buildings on campus have lights on more than they should and we wanted to find some place we could address lighting at a large enough scale to make a difference, said Govett.

But the students abandoned that idea after realizing vast differences in lighting systems from floor-to-floor and building-to-building would make a standardized solution impossible.

Bill Leach, sustainability project coordinator for Facilities Management, suggested the students instead look at what might be done to address lighting concerns in the Marriott Library. Ian Godfrey, director of library facilities, was “not only excited about the prospect of a lighting controls project, but had an area in mind,” Leach said.

That area? Special Collections.

Leach, Godfrey and Emerson Andrews, Sustainable Campus Initiative Fund (SCIF) coordinator, helped the students conduct an audit of the space, come up with a plan and develop a budget.

Light and heat take a toll on fragile documents in the Marriott Library’s Special Collections area. PHOTO CREDIT: University of Utah

Their idea: install a new lighting system with LED bulbs that are motion and daylight sensitive. Lights above each row activate only when someone moves into the area and there is insufficient daylight.

“To take light off these resources is a huge benefit for us,” Godfrey said. “Everything in here is rare and unique. Paper is always in a state of degradation. Anytime you are lowering the temperature and reducing the heat, you are slowing the deterioration process.”

The students applied for and received a SCIF revolving loan of $40,000, which paid for installation of a new lighting system over the summer. The loan fund is specifically used for energy and money saving ideas proposed by students, faculty and staff for energy conservation, renewable energy production and water conservation projects. A Rocky Mountain Power wattsmart incentive grant helped off-set some of the project’s cost.

The library will repay the loan over 13 years, using money from utility cost savings. But the impact — both monetary and in preservation of its collections — will be ongoing.

“I am thrilled that this project, initiated by these three students in my capstone class, is coming to fruition and will help to reduce the campus carbon footprint while preserving library resources,” said Follstad Shah, an assistant professor in environmental and sustainability studies and research assistant professor in geography.

The SCIF revolving loan fund used in the project is available to all students, faculty and staff who have an idea for saving energy and money. It has paid for other energy projects, such as solar panels and heating system upgrades, but this is the first lighting project, said Myron Willson, deputy chief sustainability officer.

“We were pretty excited to do something that made such a difference,” said Govett, who graduated last spring with degrees in environmental studies and ballet.

Govett and Seglem toured the retrofitted space for the first time in mid-November.

“It’s really cool to come in here and see it working with the motion sensors and all,” said Seglem, a senior majoring in environmental studies.

THE WASATCH FRONT: A LIVING LAB

Originally posted on @theU on September 17, 2018

By Paul Gabrielsen, science writer, University of Utah Communications

University of Utah scientists know how to turn a challenge into an opportunity. Repeatedly, researchers at the U have developed innovative research solutions to some of the Salt Lake Valley’s most serious environmental issues. Light rail trains sample the air as they dart around the valley. Camera traps keep their eyes on the wildlife in mountain canyons. Climate and hydrological observations track rain, snow, plant stress, groundwater and streamflow from the mountain crest to the valley floor.

All of these environmental factors—earth, air, water and life—are interconnected, though. A change in one has the potential to impact any or all of the others. So how do U researchers respond to this extraordinary complexity? By banding together. This fall, the U launches a new university-wide collaboration called the Wasatch Environmental Observatory.

“We’ve talked about campus as a living lab, and faculty have gotten grants to develop research infrastructure throughout the Wasatch Front,” says Brenda Bowen, director of the Global Change and Sustainability Center (GCSC). “We have all this infrastructure and we thought: ‘How can we pull this together in a new way to not just study campus as a living lab, but our home, the whole Wasatch Front?’”

This observatory isn’t a single facility like, say, an astronomical observatory. It’s a network of sensors and instruments, stretched all across the Wasatch Front, that collectively monitor multiple environmental metrics. “We’re pulling together all of the systems that were initially funded by individual researchers or large multi-researcher grants to make it into something more than the sum of its parts,” Bowen says.

Part of the observatory is relatively stationary, providing consistent, long-term data. But part is portable and deployable, Bowen says. “As events occur, we can deploy infrastructure into a certain area by pulling together hydrologic, atmospheric and ecological research facilities into a distributed observatory or field station.”

Paul Brooks, professor of geology and geophysics, says that the observatory is a framework for future projects and infrastructure to be added in. State, federal and local agencies, he says, have already expressed interest in tying their instrumentation into the WEO network. The measurements and results from WEO can then be used by those stakeholder agencies. “That’s one of the exciting areas of WEO,” Brooks says. “It takes the new knowledge generated by students and faculty and ports it through as quickly as possible to people on the ground who use that knowledge to make better decisions.”

For Bowen and the GCSC, which brings together faculty from across campus to study environmental issues, WEO is a fulfillment of the center’s mission. “It’s realizing what GCSC strives to be,” Bowen says. “WEO will help integrate everything we’re doing to advance sustainability in our own backyard.” 

WEO will be led by a committee of six faculty members (including Bowen and Brooks) hailing from the departments of Geology & Geophysics, Atmospheric Sciences, Civil and Environmental Engineering, and the School of Biological Sciences. Beyond that, nearly 40 researchers from 13 different departments and eight colleges already have research or outreach projects associated with WEO.

According to a project summary from GCSC, current facilities to be linked together through WEO include:

  • Distributed hydroclimate, meteorological, biological and hydrological observations in seven catchments spanning the Wasatch Crest through the Great Salt Lake including six closely spaced stations spanning an elevation gradient from the top of Red Butte Creek down through campus and on to the Jordan River
  • Experimental stormwater, landscape, transportation, and architectural design infrastructure on campus
  • Long-term ecological, geological, and snow study sites
  • Seven atmospheric trace gas and climate stations from Hidden Peak (Snowbird) to the Salt Lake Valley floor
  • Light rail-based atmospheric observations distributed across land use and elevational gradients in the Salt Lake Valley (TRAX)
  • Deployable and relocatable high-precision atmospheric and hydrologic observation equipment
  • Co-Located, long-term, and spatially extensive databases from multiple disciplines

All of that equipment requires service, repair and maintenance. So WEO provides for two full-time research technical specialists, Dave Eiriksson and Ryan Bares, to keep the sensors running.

Brooks says the interconnectedness of the WEO sensor systems allows researchers to study the impacts on one environmental system, say, urban development, on others, such as the quality of water in urban streams.

“The idea is that each individual solution we have exists in a broader context,” Brooks says. “We want to be as comprehensive as possible so that the solution to one issue doesn’t then create a new problem down the line that perhaps we didn’t think of.”

Brooks adds that the U is uniquely positioned, with researchers and facilities, to study environmental issues common throughout the West.

“WEO brings those researchers and resources together,” he says, “so instead of addressing these issues piecemeal we have the ability to address them in concert.”

Want to join in?

If you’re considering or conducting environmental research along the Wasatch Front, come to a think tank mixer presented by GCSC on Sept. 26, from 5-7 p.m. at the College of Law, sixth floor, Flynn Faculty Workshop.

Learn more and register here.

 

5 GREEN FEATURES

Originally posted on @theU on September 10, 2018

By Brooke Adams, communications specialist, University of Utah Communications

The newly opened Gardner Commons building, which replaced Orson Spencer Hall, was designed with sustainability at its core. Here are five of its green features:

Looking out towards a carbon-neutral future

Gardner Commons is designed to be 100 percent electric-based. As the U installs and purchases more renewable energy like solar and geothermal, the building will eventually become carbon neutral, with no need for any fossil fuels. This design allows the U to move closer to its goal of carbon neutrality by 2050.

 

 

Looking down to the earth for power

The building is heated and cooled by the first and only geothermal ground-source heat pump on campus. The pump uses the ground as a battery, putting heat into the ground during the summer and taking heat out of the ground during the winter. This is estimated to save more than $70,000 a year in energy costs!

 

 

 

Looking inside for a holistic eating experience

Carolyn’s Kitchen, inside the commons, stocks reusable dishes, silverware and even reusable to-go containers. When it comes to food, this location features a plant-based station that satisfies vegan and vegetarian diets, a rotating station that hosts local vendors including Saffron Valley and local roaster Hugo Coffee, which uses fair trade beans. All this and more makes Carolyn’s Kitchen a holistic eating experience.

 

 

Looking all around for unique, beautiful and ethically sourced building materials

Those funky little dots on the windows? These ‘frits’ act as blinds while still allowing daylight, reducing solar heat gain to the inside of the building and glare from the sun. The horizontal panels on the outside of the building are glass fiber reinforced concrete, made locally. (Other buildings in Salt Lake City with these kinds of panels had them shipped from as far as Germany.) Marble from OSH’s restrooms was repurposed in Gardner to build front entry desks for all departments.

 

 

Don’t forget the Water Conservation Garden

Sandwiched between Gardner Commons and the Eccles School of Business, the Water Conservation Garden will be a beautiful oasis in the middle of campus. Formerly covered with water-consuming grass, the garden will bring water that would be piped through the city’s stormwater drain system to the surface, filter it, use it for irrigation, and send what’s left into the groundwater. The impetus for the garden was an $80,000 grant written by a team of U students and funded by the Sustainable Campus Initiative Fund. The students also helped bring Red Butte Garden’s staff and expertise to this campus project. Look for the garden in spring 2019.

POWER TO THE PEOPLE

Originally published on @theU on August 20, 2018.

By Vince Horiuchi, public relations associate, College of Engineering

Hurricane Maria’s devastation of Puerto Rico last September, which left nearly all the island’s 3.4 million residents without power, is one of the most frightening scenarios for a metropolis: A natural disaster or cyberattack wipes out a city’s power grid.

University of Utah electrical and computer engineering assistant professor Masood Parvania has received a $2 million grant from the Office of Naval Research to build a new laboratory and develop technology that would help communities get their power back online faster in the wake of a natural disaster or cyberattack.
PHOTO CREDIT: Dan Hixson/University of Utah College of Engineering

But University of Utah electrical and computer engineering assistant professor Masood Parvania is building a new laboratory to develop technology that would help communities get their power back online faster in the wake of those kinds of devastating events.

He was awarded a three-year, $2 million grant from the U.S. Navy’s Office of Naval Research beginning July 1 to build the lab and research and test technology for microgrids–smaller, more localized versions of a city’s power grid that could provide backup electricity in a catastrophic situation.

When a natural disaster hits, much of a city’s power grid that receives electricity from sources such as thermal and hydroelectric plants, can go dark.

Microgrids are power systems in smaller areas of a city that operate autonomously from the main grid and get electricity from sources like solar panels or energy storage devices. They can provide emergency power to neighborhoods and essential services such as hospitals until the main system is restored. Microgrids can be as small as a building like a college campus or military base that use backup generators, or a large neighborhood that uses wind turbines or geothermal generation. Microgrids, for example, are now being created all over Puerto Rico in the event of future massive power outages.

Parvania and his team at the Utah Smart Energy Lab (U-Smart) will be developing microgrid controllers that act as the computerized brains of a microgrid and determine how to best distribute electrical power in an area. These controllers will be faster, smarter and more secure from cyberattacks, the newest concern for power companies. Two days before Christmas in 2015, for example, Russian hackers remotely attacked the control centers of three Ukrainian electricity distribution companies, briefly wiping out power to more than 200,000 customers.

“Today, power grids are becoming more and more vulnerable with modernization and digitization,” Parvania says. “These microgrid controllers will be faster and more accurate in returning power back to communities. But we also want to make sure that once they work they are not affected by cyberattacks.”

Parvania’s laboratory, which will be built on the University of Utah’s College of Engineering campus, will consist of software and specialized computers called “real-time digital simulators” that will simulate a power system. New technologies that his team develops can be experimented on this new testbed. The laboratory also will be used to help educate the next generation of power engineers who are studying microgrids.

Another component of the research grant involves commercializing any technology that Parvania’s team develops. The University of Utah is partnering with the Utah Science Technology and Research (USTAR) initiative, Governor’s Office of Energy Development, Idaho National Lab, and the U’s Office of Technology and Venture Commercialization.

“We are also going to work with utilities, energy companies, and military bases to see how we can commercialize our technology for the betterment of communities,” says Parvania.