curating global ecology through big data

Bianca Greeff, Graduate Assistant.

Ecologists seek to answer the big questions about how the world is changing, and how species and ecosystems are responding to those changes. To answer these questions, a new network of analysis is needed. Community-curated data sources can provide new insight on how systems are have changed in the past and how they are changing now.

Jack Williams, professor of Geography at the University of Wisconsin-Madison, will show how two community curated data sources are bringing reliable, big data to bear on the challenges of a changing world at the GCSC Seminar Series on Tuesday, Nov. 28, 4-5 p.m. in 210 ASB.

Jack Williams, used with permission.

According to Williams, four V’s (volume, variety, velocity, and veracity) characterize ecological big data. Volume refers to the size of data, variety is the heterogeneity – diverse nature – of data types and measurements, velocity is the rate data needs to be generated or analyzed at, and veracity is the potential uncertainties.

Community-curated data sources have been developed to enable global-scale science. These data networks are also changing the way data is analyzed.

“The standard has been to run ecosystem models and analyze data somewhat independently of each other,” Williams said. “But now we have the opportunity to do more simulations where the data doesn’t constrain the simulations and improve the parameterization and forecast.”

Multiple groups have begun building databases that bring the data and paleoecological records from multiple networks to larger scales. These data sets can be applied to testing and improving the predictability of ecosystem models.

Williams will structure his talk around two different data networks—Neotoma and PalEON. Neotoma gathers large amounts of records from around the world and assembles it into one common resource that is publically available. PalEON is an example of one type of research that can be done with this kind of global platform for ecological and paleoecological research.

“Neotoma and PalEON are part of a broader set of efforts to gather many different kinds of ecological data into extended observational networks,” Williams explained. “We can now look at ecological dynamics at long timescales and at large spatial scales.”

Williams studies species’ responses to climate change. By using the last 2,000 years as a model, he can look at how species have migrated or changed in past climate. His work with PalEON is interested in using ecosystem models to forecast and predict species responses to climate change at decadal and centennial time scales.

“An interesting initial finding is that, as a result of climate change and human land use over the last century, the climatic niches of trees have changed,” explained Williams. “A lot of our predictive models use modern climates and modern tree species distribution as the basis of our predictions of forest responses to current and future climate change. Seeing how niches have changed suggests there is perhaps there is some disequilibrium with current climate change.”

To learn more about ecological big data, attend William’s seminar, “Achieving global ecology via dispersed community-curated data resources: Neotoma and PalEON” on Tuesday, Nov. 28, 4-5 pm in 210 ASB.

 

Cover Photo by geralt via pixabay. CC0.

WHICH WAY WILL WE TIP?

By: Liz Ivkovich, Sustainability Office.

Tipping Point, def.: the critical point at which a change becomes unstoppable.

Earth is undergoing an alarming series of changes due to human impacts. Warming climatewater shortagesincrease in infectious diseases, and loss of biodiversity. These changes and others are converging into a rapidly approaching tipping point for Planet Earth. What individuals, groups, and policymakers do in the next 10-20 years will determine which way we will tip, and what kind of future the next generation of all Earth’s species will have.

On Tuesday, Feb. 28, 4:00-5:00 p.m., Anthony Barnosky will present on the Earth’s tipping points and their implications for political and personal action at the Global Change and Sustainability Seminar Series. The lecture will be held in 210 ASB.

With years of research on past tipping points in Earth’s ecological history, Anthony Barnosky, paleoecologist from Stanford University, focuses his efforts on activating humans to tip towards environmental sustainability.

“What I have done is use the fossil record to understand how the Earth system responds to big changes, unusual changes,” Barnosky said. “It inevitably took me into thinking about some of the big changes that people are causing to the planet today.”

It is difficult to write about Barnosky’s research without sounding apocalyptic. He agrees that this is heavy stuff; however,  he wants people to know that their individual and local actions are meaningful.

“The sorts of issues that I talk about are very weighty, global issues,” Barnosky said. “People often throw up their hands in despair. But the reason these are big issues is that 7 billion people are doing things in a certain way. So, it really does all start with the individual. The cumulative actions of 7 billion individuals are enormous.”

Barnosky hopes the tipping point for Planet Earth won’t be catastrophic change, but rather large-scale social action. In this tipping point, 7 billion people use the knowledge, technology, and resources available to act in more sustainable ways. This vision of positive social action has driven Barnosky into conversation with policymakers.

In 2012, the governor of California approachedBarnosky to turn his Nature paper on Earth’s sixth mass extinction into a scientific consensus statement. The governor was able to use the consensus statement, which was signed by more than 500 scientists, to advocate for positive action towards avoiding a tipping point.

Barnosky also had advice for other scientists about how to effectively collaborate with policymakers.

“It’s not just walking into a policy maker’s office and pronouncing what the science says,” Barnosky concluded. “Working with policymakers means actually asking what are their needs are as far as science. Developing a dialogue is very important so that you understand where they are coming from, and they understand where you are coming from.”

Learn more on Tuesday, Feb. 28, 4:00-5:00 p.m. in 210 ASB.

Cover Photo: Biodiversity by Dano, CC by 2.0 via Flickr