HUMANS OF THE U: NAIMA DAHIR

Originally post on @theU on March 9, 2019.

“I grew up in a family that never discussed environmental issues or sustainability. That was not something known to us. My parents have been through a lot—war and things like that—so sustainability and environmental justice hasn’t been a focus. We weren’t privileged enough to know about those issues or to have the resources or knowledge to know how our actions related to climate change.

When I first started college and learned about environmental racism, such as the water crisis in Flint, MI., I was taken aback at how these environmental injustices are happening in communities of color that don’t have the resources to fight back against things that are affecting them. It became personal to me as a person of color, who comes from a community that has a large refugee community with a low socioeconomic status.

I’m a big believer that we need to make sure we take care of our environment and our world. The earth has resources that are finite and can’t sustain us the way we have been using them.

When I found out the U offered free bus and TRAX passes I was excited. I use TRAX to get to and from school every day. I also use the bus sometimes as well when I need to get to places outside of campus. It’s easier than driving and I’m able to do homework, read and get things done.

But more important, I am reducing my carbon footprint and that was important to me. It makes me feel empowered just to be able to do something as easy as taking TRAX to help the planet. It’s the little things we do in our communities that really add up at the end of the day.”

— Naima Dahir, junior, International Studies and Environmental & Sustainability Studies

AIR QUALITY RESEARCH

Originally posted on @theU on February 11, 2019.

By Kate Whitbeck, University of Utah Sustainability Office

It should come as no surprise that the University of Utah is home to some of the world’s premier experts on air quality. As we settle deeper into the winter inversion season, researchers at the U renew their efforts to better understand who the big emitters are, who is being affected and how we can clear our air. It’s not just the folks in the atmospheric sciences who are studying air quality. We have professors in art, philosophy, geography, sociology and economics who are working to better understand the causes and identify comprehensive solutions.

Sara Grineski

Sara Grineski, professor of sociology and environmental studies, focuses on environmental health disparities, children’s health and environmental justice. She explores how social inequalities shape our exposure to air pollution as well as the health effects caused by air pollution.

The results of her research have led her to believe that “not everyone has the same opportunities to protect themselves in terms of where they live or work. It doesn’t matter if it is a red air quality day—landscapers (for example) have to be outside working. We can try our best to protect our family in our little bubble but the solution to the problem is we need to reduce emissions and make the air cleaner for everyone,” Grineski said. “We need to see solutions at a policy level. Air quality needs community solutions, state-level action and federal policy.”

 

Daniel Mendoza

Daniel Mendoza has reached similar conclusions. As a research assistant professor in the Department of Atmospheric Sciences, his work focuses on the impact of poor air quality on health, both for individuals and for the population as a whole. “While historically, studies have looked at very elevated pollutant levels, such as those found during inversions,” he said. “Our current research shows that even small increases in PM 2.5 or ozone are responsible for outcomes ranging from increased absences in schools to a greater number of hospitalizations due to pulmonary conditions.”

One of the simplest solutions lies with changing behaviors around transit.  “Within the metropolitan planning context, we have found that the use of transit as an alternative to single-passenger vehicle use can mitigate emissions in a meaningful way,” Mendoza said.

Frequently, people place the blame on industry, without acknowledging that “refineries are there because we demand the gasoline to drive our cars and diesel for our goods to be delivered. Personal accountability is a necessary component of solving this problem,” Mendoza said. The solution can be as simple as “not idling our cars, taking transit as often as possible and being more conservative with the temperature in our homes.”

Grineski and Mendoza are only two of the many researchers engaged in examining air quality at the U. The university’s Global Change and Sustainability Center hosts an inventory of U researchers, publications, presentations, media references and awards related to air quality. As the smog settles in our valley, and we know our researchers are working hard to do their part, we need to make conscious choices to reduce our own emissions and remind our elected officials of the importance of state and federal policy to make our air cleaner for everyone.

Throughout February, take action on air quality by tracking your commute behaviors with the Clear the Air Challenge, a statewide competition that aims to reduce emissions from vehicles by promoting alternative transit options. Join the U team at travelwisetracker.com/s/university-of-utah.

HUMANS OF THE U: DEBOLINA BANERJEE

Originally posted on @theU on March 1, 2019.

“Having lived in India, Hong Kong and now Utah, public transportation has always been a huge part of my life. I’ve seen the difference infrastructure makes from country to country and the impacts it has on people’s travel behaviors. Coming from a highly dense megalopolis where the sheer number of people heightens traffic congestion so much so, it’s almost a relief to access public transportation. Utah’s a welcome change with its TRAX lines, protected bike lanes and other numerous public and active transit systems.

Coming from India, I cannot help but compare the poor driving conditions coupled with high fuel prices and other affordability issues, forces people to take the public transit. While here in the U.S. improved roadways, affordable car loans and low fuel prices encourage higher vehicle ownership and driving behaviors.

The two main reasons to take public transport in India are extreme traffic congestion and a huge percentage of daily workers who cannot afford their own vehicles. Public transport is a necessity not a choice. This high demand coupled with the government’s inability to supply cheap public transit also highlights the reality, the public transportation fleet needs upgrading and is not always an enjoyable ride. Whereas, in Utah, the bus and train fleet are modernized which guarantees a comfortable ride.

Being a user of public transit all my life, I see the numerous potentials here in Utah. What’s lacking here is the ‘necessity’ factor. People feel more in control of their schedule with driving. Ways to make mass transit more convenient could be; increasing the frequency of bus and TRAX, expanded routes to cover more neighborhoods, installing all-weather bus stop shelters and better integrating active transportation facilities with existing public transit, like bike racks at TRAX stops and building ‘floating’ bus stops.

While not my field of study in City and Metropolitan Planning, I know my colleagues are working on long-lasting solutions. They are thinking of unique ways to make the system so convenient that people want to ride a bus or train.

I’ve never owned a car. And I don’t think I’ll need to while I’m part of the U community. Thanks in large part to the TRAX and UTA benefit, my daily commute is taken care of.”

—Debolina Banerjee, doctoral student, Department of City and Metropolitan Planning and research assistant, Center for Ecological Planning + Design, LEED AP

Banerjee is just one member of the U whose commuting behavior is complex. Transportation mode choices depend on multiple factors, including weather, time of day, cost, proximity and convenience. Many commute trips involve more than one mode of transportation. Source: U. Office of Sustainability

THE U’S IMPACT ON AIR QUALITY

Orginally posted on @theU on February 19, 2019.

By Myron Willson, Deputy Chief Sustainability Officer

The inversion season is upon us. This can be a time to point fingers at other polluters, but it should also be a time to recognize our own contributions to the murky haze and examine what steps we are taking to reduce emissions, including those emissions created by our actions at work and school.

So, what is our own university doing to reduce emissions? The university (health sciences and lower campus) is often likened to a small city with the total population of faculty, staff and students exceeding 60,000. This means that we have a fairly significant potential for creating emissions.

Fortunately, in addition to supporting faculty who are conducting research on various aspects of air quality and its impacts, the university is also proactively identifying areas for emissions reductions. In 2014, leadership authorized the first universitywide emissions review resulting in a report that provided recommendations for infrastructure and operational changes. Some areas identified:

  • Efficiency improvements and controls for large natural gas-powered boilers for building heat and hot water
  • Emergency diesel generator replacement
  • Phasing out dirty gas-powered landscaping equipment and replacing with electric options
  • Reducing and controlling chemicals and solvents used in laboratories, shops, etc.
  • Increasing sustainable commuting (including bicycles, public transit and car sharing)

As resources have allowed, many of these recommendations have already been implemented. Numerous changes have been driven by the dedicated staff in facilities’ Sustainability and Energy Management OfficePlanning Design and ConstructionCommuter Services, as well as the Occupational and Environmental Health and Safety Office.  At this point, nearly 50 percent of the recommendations have been or are being addressed.

  • Many equipment upgrades have been completed at the central heating plant and operation has been optimized for efficient fuel use.
  • The landscaping team is investing in the electrification of equipment and has implemented a moratorium on gas-fired equipment on yellow and red AQ days.
  • The “Better-Buildings Challenge” has been fully funded and will result in a 20 percent reduction of energy use per square foot by 2020.
  • Based on feedback from the Sustainability Office, the Clear the Air Challenge has shifted from July to February to include students among other campus commuters.
  • A full-time active transportation manager position has been established along with funding for infrastructure changes to support non-vehicular transport.

These actions are netting results. Even as the campus has grown (both in numbers of students and building square footage) total emissions have nearly leveled out or decreased. Close to 50 percent of our faculty, staff and students come to campus each day in something other than a single-occupant vehicle (making us very competitive with other Pac-12 institutions according to the latest reports).

Recent building projects on campus, such as Gardner Commons, have been designed to produce minimal emissions as the systems for heating and cooling are electric. Almost no on-site emissions are created. In addition, as the university continues to increase its purchase of renewable electricity (geothermal and solar), emissions due to the operations of buildings like Gardner Commons will be nearly zero.

Going forward, new federal and state requirements for business and institutions related to air quality are likely to become more restrictive. University leadership has asked staff to review the 2015 Air Quality Task Force Report, provide recommendations for further reductions and lead the way in reducing emissions. Stay tuned for an update.

These are all reasons for optimism. So, on days when our air isn’t fit to breathe and we make a conscious choice to reduce our own emissions, we can rest assured that the university is doing its part too.

Throughout February, take action on air quality by tracking your commute behaviors with the Clear the Air Challenge, a statewide competition that aims to reduce emissions from vehicles by promoting alternative transit options. Join the U team at travelwisetracker.com/s/university-of-utah.

Invert the Inversion

By Ayrel Clark-Proffitt, campus engagement, Sustainability Office

It is hard to ignore Salt Lake Valley’s poor air quality this winter unless you’ve figured out how to shut your eyes and mouth and plug your nose (or you haven’t gone outside at all). Views of our mountains, the Wasatch and Oquirrh ranges, are at times completely obscured by the smog surrounding us. That tickle in the throat could be a virus or it could be a reaction to inhaling the pollution hovering over the city. Neither are good options.

But wait, there is good news. We can reduce the particulate matter choking our healthy air by making different choices—particularly when getting from point A to point B. For the month of February, join the university’s Clear the Air Challenge team and help invert the inversion. Improve air quality (and be eligible from some cool opportunity drawing prizes from GREENbikeCotopaxi the Campus Bike Shop and more).

Now in its 10th year of friendly competition, Utah’s Clear the Air Challenge encourages people to take fewer trips, and the U is the reigning champion. Did you know that mobile sources, including our cars, are responsible for nearly half of the fine particulate matter on our wintertime poor air quality days? By using TravelWise strategies—including walking, biking, riding transit, carpooling and more—we can cut transportation-related emissions. Through collective action, by changing the way we travel we can make a big difference.

In 2018, the challenge saved an estimated 386 tons of CO2 or the equivalent of the emissions from nearly 45 million smartphones charged. By logging your alternative transportation trips on the online dashboard or through the brand new mobile app, you can track your contribution to emissions saved, plus see your dollars saved and calories burned in comparison to driving alone.

Automate your commute trips

For the first time in its history, the Clear the Air Challenge now connects with two different apps. The first app, Commute Tracker by RideAmigos is specifically designed to work with the challenge to log a user’s commute data. Find a step-by-step guide to connecting the app with your Clear the Air Challenge account on the university’s sustainability website.

The second app is Strava, a free fitness app particularly popular with cyclists and runners. Strava connects with any GPS-enabled device and tracks and analyzes personal health information. Ginger Cannon, active transportation manager for the U, said, “I use Strava because I can track every activity I do, including my active commute to work. Strava can also help connect you to a virtual community of like-minded people–for example, there is a commuter group you can join to meet others who bike or walk to the university.”

Who can participate?

The Clear the Air Challenge is for everyone. Sincerely. Even friends and family are welcome to join the University of Utah team. There are so many different ways to engage in reducing emissions from transportation. Obvious options include riding transit and shuttles, bicycling, and walking—even if it is just walking to a nearby meeting instead of driving.  Even those who need to drive have options, including skipping trips by bringing lunch from home and trip chaining by doing multiple errands in a row to avoid vehicle cold starts.

Together we can clear the air. Join the team and let’s get started.

The university’s Clear the Air Challenge participation is managed by the Sustainability Office, with support from ASUU, Commuter Services, University of Utah Health, Real Estate Administration and University Marketing & Communications. The Clear the Air Challenge is a partnership between TravelWise, UCAIR and the Salt Lake Chamber.

PROTECTING OUR WINTERS

Originally posted on @theU on Monday, January 7, 2018.

By Abby Ghent, sports and sustainability student ambassador, Athletics and the Sustainability Office

Mind-blowing fact: According to The Washington Post, if you were born after February 1985, you haven’t experienced a month where the Earth’s average monthly temperature was below average. Rising temperatures, as well as a bunch of other compounding factors, are impacting our snowfall and our snowpack.

Join us on campus Jan. 9 from 11 a.m.-1 p.m. outside the Union to learn more about more ways to cut down on your carbon footprint and possibly win free lift tickets.

As someone within that demographic, who’s an ex-professional and avid skier with friends who are still pros, this fact is frightening. I understand the severity of climate change in relation to professional skiers’ jobs—their livelihood depends on that snowpack. Many of us are concerned there won’t be enough snow to hold downhill ski races in the not-so-far-away future.

I eagerly await each fall and wish to delay each spring. However, these ideas, “I want to keep skiing! I don’t want it to be summer yet!” are selfish. Wanting there to be enough snowpack to thoroughly support our water needs, however, is not. I don’t think we emphasize just how much we rely on the snow in our mountains for non-recreational usage.

Snowmelt is important for many things such as providing for personal water use, dampening (no pun intended) the chance of wildfires, supporting ecological systems and many industrial uses. In the Western U.S., 80 percent of the water runoff from snowpack in the mountains is used for agriculture, according to researchers.

The lack of snow in our mountains creates a significant positive feedback loop. A warming climate leads to less snow, which leads to less water in the ground, which leads to more fires, which leads to more loose dirt or fine particles that are lifted by stronger winds (due to more high/low pressure systems because of our warming climate), which are carried further into the mountains landing on what little snow we have, creating a lower albedo, which in turn melts the snow faster and on it goes. Just one long run-on sentence.

The bus from Snowbird to Alta.

So, what can we do about it? There are many things that can be done but I want to focus on one thing: transportation. Here in Utah, we can see how much nastiness gets trapped in the air, and much of that comes from our cars, buses and trucks. In 2010, the amount of CO2 produced by on-road transportation (this doesn’t even include off-road vehicles and equipment) was the second largest contributor after commercial/industrial buildings (U.S. Department of Energy, 2010).

“But I have to drive to work! But I need to get to the ski area somehow!” Yes, all valid reasons to use some sort of transportation, but do we all need to take our own personal vehicles separately to many of the same places? I think we can do better. Public transit is an option, both around town and to the ski resorts. We know that taking the bus to ski areas can be more difficult than it sounds depending on your starting point, so don’t worry, there are other options. Carpooling can be convenient—ride to the ski areas or park-and-ride lots together and save on parking, gas, emissions and time.

We want you to pledge to look for carpooling and public transportation options first to get to your final destination this winter and forever.

ABOUT THE AUTHOR

Abby Ghent is a former U.S. Ski Team and University of Utah Ski Team member. She grew up in the mountains of Colorado, calling Vail her home mountain. She moved to Utah three years ago to race for the U and is currently studying environmental and sustainability studies, international studies and music.

WHAT YOU CAN’T SEE CAN HURT YOU

 

 

Originally published on @theU on October 15, 2018.
 
By Vince Horiuchi, public relations associate, College of Engineering
 

What if you could see nasty microscopic air pollutants in your home?

PHOTO CREDIT: Dan Hixson/University of Utah College of Engineering

PHOTO CREDIT: Dan Hixson/University of Utah College of Engineering
University of Utah School of Computing assistant professor Jason Wiese (left) and computing doctoral student Jimmy Moore conducted a study to determine if homeowners change the way they live if they could visualize the air quality in their house. They provided participants with air pollution sensors, a Google Home speaker and a tablet to measure and chart the air quality in their homes.

Engineers from the University of Utah’s School of Computing conducted a study to determine if homeowners change the way they live if they could visualize the air quality in their house. It turns out, their behavior changes a lot.

Their study was published this month in the Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. The paper was also presented Oct. 9 in Singapore during the “ACM International Joint Conference on Pervasive and Ubiquitous Computing.” The paper can be viewed and downloaded here.

“The idea behind this study was to help people understand something about this invisible air quality in their home,” says University of Utah School of Computing assistant professor Jason Wiese, who was a lead author of the paper along with U School of Computing doctoral student Jimmy Moore and School of Computing associate professor Miriah Meyer.

During the day, the air pollution inside your home can be worse than outside due to activities such as vacuuming, cooking, dusting or running the clothes dryer. The results can cause health problems, especially for the young and elderly with asthma.

University of Utah engineers from both the School of Computing and the Department of Electrical and Computer Engineering built a series of portable air quality monitors with Wi-Fi and connected them to a university server. Three sensors were placed in each of six homes in Salt Lake and Utah counties from four to 11 months in 2017 and 2018. Two were placed in different, high-traffic areas of the house such as the kitchen or a bedroom and one outside on or near the porch. Each minute, each sensor automatically measured the air for PM 2.5 (a measurement of tiny particles or droplets in the air that are 2.5 microns or less in width) and sent the data to the server. The data could then be viewed by the homeowner on an Amazon tablet that displayed the air pollution measurements in each room as a line graph over a 24-hour period. Participants in the study could see up to 30 days of air pollution data. To help identify when there might be spikes in the air pollution, homeowners were given a voice-activated Google Home speaker so they could tell the server to label a particular moment in time when the air quality was being measured, such as when a person was cooking or vacuuming. Participants also were sent an SMS text message warning them whenever the indoor air quality changed rapidly.

PHOTO CREDIT: Jason Wiese
Participants were given an Amazon table that displayed the air pollution data in an easy-to-understand line chart so they could see when and why the air quality worsened. Homeowners also could label points in time when the pollution would spike, such as when they were cooking or vacuuming.

During the study, researchers discovered some interesting trends from their system of sensors, which they called MAAV (Measure Air quality, Annotate data streams and Visualize real-time PM2.5 levels). One homeowner discovered that the air pollution in her home spiked when she cooked with olive oil. So that motivated her to find other oils that produced less smoke at the same cooking temperature.

Another homeowner would vacuum and clean the house just before a friend with allergies dropped by, to try to clean the air of dust. But what she found out through the MAAV system is that she actually made the air much worse because she kicked up more pollutants with her vacuuming and dusting. Realizing this, she started cleaning the house much earlier before the friend would visit.

Participants would open windows more when the air was bad or compare measurements between rooms and avoid those rooms with more pollution.

“Without this kind of system, you have no idea about how bad the air is in your home,” Wiese says. “There are a whole range of things you can’t see and can’t detect. That means you have to collect the data with the sensor and show it to the individual in an accessible, useful way.”

Researchers also learned that circumstances that made the air pollution worse differed in each home. Vacuuming in the home, for example, would have different effects on the air quality. They also learned that if homeowners could visualize the air quality in their home, they always stayed on top of labeling and looking at the data.

Wiese says no known manufacturers make air quality systems for the home that allow residents to visualize and label the air quality in this way, but he hopes their research can spur more innovation.

The study involved engineering in collaboration with other University of Utah scientists, including biomedical informatics and clinical asthma researchers. It was funded as part of a larger National Institutes of Health program known as Pediatric Research using Integrated Sensor Monitoring Systems (PRISMS), launched in 2015 to develop sensor-based health monitoring systems for measuring environmental, physiological and behavioral factors in pediatric studies of asthma and other chronic diseases.

Research reported in this publication was funded by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Number U54EB021973. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

 

 

Clear The Air

By Vince Horiuchi, public relations associate, College of Engineering

Air conditioning and heating systems are not only great for keeping a home cool or warm, but they also help clean the air of harmful pollutants.

While home thermostats control HVAC (heating, ventilation, and air conditioning) systems based on temperature, engineers from the University of Utah have studied the effects of controlling them based on a home’s indoor air quality. They have discovered that programming your air conditioner and furnace to turn on and off based on the indoor air quality as well as the temperature doesn’t waste a lot of additional energy but keeps the air much cleaner.

Their findings, published in a paper titled Smart Home Air Filtering System: A Randomized Controlled Trial for Performance Evaluation, were presented on Sept. 26 at this year’s “IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies” in Washington D.C. The lead authors of the paper are University of Utah electrical and computer engineering professor Neal Patwari and U electrical and computer engineering doctoral graduate, Kyeong T. Min.

PHOTO CREDIT: University of Utah Professor Neal Patwari
This graph shows that when a home heating and air conditioning system turns on and off based on temperature alone (normal), the air quality in the home can result in the dirtiest air based on 2.5 particulate matter. Meanwhile leaving the heating and air conditioning on all the time (On) results in the cleanest air at the expense of using the most energy. The SmartAir plot shows that a system that turns on and off based on both temperature and air quality can result in a home with much cleaner air but without a much higher cost in energy.

The researchers, led by Patwari, purchased a series of off-the-shelf portable air pollution sensors and connected them wirelessly to Raspberry Pis, small and inexpensive computers for hobbyists. With specialized software developed by the engineers, the computers were programmed to automatically turn on the air conditioning system whenever the particulate matter in the air reached a certain point and turn off the system when the particulate matter dipped below a certain measurement.

For the study, 12 sensors were deployed in four homes in 2017. In each house, two of the sensors were inside rooms, and one was placed outside under a covered porch. Starting at midnight each night, each home would randomly operate the sensors under one of three conditions: “Normal,” in which the HVAC systems turned on and off normally based on temperature only; “Always On,” in which the air system operated continuously all day, and; “SmartAir,” in which the system turned on and off the HVAC fan based on the pollution measurement in the house as well as the thermostat’s temperature setting.

Based on five months of data, the study revealed that operating with the “SmartAir” setting in which it turned on and off based on temperature and air quality cleaned the air almost as well as if the HVAC fan was operating all day, but it used 58 percent less energy. Meanwhile, when the heating and cooling system operates normally without regards to the air quality, the air was 31 percent dirtier than with the “SmartAir” setting.

“For someone with asthma, an exacerbation can be triggered by poor air in the home, particularly for children,” Patwari says. “This kind of monitoring system could allow them to live more comfortably and with fewer asthma symptoms and fewer trips to the emergency room.”

Because of ordinary activities in the home such as cooking, vacuuming and running the clothes dryer, air quality inside a home can at certain times of the day be much worse than outside. Constant exposure to indoor air pollutants can lead to short-term health effects such as irritation of the eyes, nose, and throat, as well as headaches, dizziness, and fatigue, according to the United States Environmental Protection Agency. Long-term exposure could also lead to respiratory diseases, heart disease and cancer and could be fatal for some. Yet there are no known home or commercial HVAC systems that are controlled by air quality sensors.

Patwari’s study involves engineering in collaboration with other University of Utah scientists, including biomedical informatics and clinical asthma researchers. It was funded as part a larger National Institutes of Health program known as Pediatric Research using Integrated Sensor Monitoring Systems (PRISMS), launched in 2015 to develop sensor-based health monitoring systems for measuring environmental, physiological and behavioral factors in pediatric studies of asthma and other chronic diseases.

Research reported in this publication was funded by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Number U54EB021973. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

THE WASATCH FRONT: A LIVING LAB

Originally posted on @theU on September 17, 2018

By Paul Gabrielsen, science writer, University of Utah Communications

University of Utah scientists know how to turn a challenge into an opportunity. Repeatedly, researchers at the U have developed innovative research solutions to some of the Salt Lake Valley’s most serious environmental issues. Light rail trains sample the air as they dart around the valley. Camera traps keep their eyes on the wildlife in mountain canyons. Climate and hydrological observations track rain, snow, plant stress, groundwater and streamflow from the mountain crest to the valley floor.

All of these environmental factors—earth, air, water and life—are interconnected, though. A change in one has the potential to impact any or all of the others. So how do U researchers respond to this extraordinary complexity? By banding together. This fall, the U launches a new university-wide collaboration called the Wasatch Environmental Observatory.

“We’ve talked about campus as a living lab, and faculty have gotten grants to develop research infrastructure throughout the Wasatch Front,” says Brenda Bowen, director of the Global Change and Sustainability Center (GCSC). “We have all this infrastructure and we thought: ‘How can we pull this together in a new way to not just study campus as a living lab, but our home, the whole Wasatch Front?’”

This observatory isn’t a single facility like, say, an astronomical observatory. It’s a network of sensors and instruments, stretched all across the Wasatch Front, that collectively monitor multiple environmental metrics. “We’re pulling together all of the systems that were initially funded by individual researchers or large multi-researcher grants to make it into something more than the sum of its parts,” Bowen says.

Part of the observatory is relatively stationary, providing consistent, long-term data. But part is portable and deployable, Bowen says. “As events occur, we can deploy infrastructure into a certain area by pulling together hydrologic, atmospheric and ecological research facilities into a distributed observatory or field station.”

Paul Brooks, professor of geology and geophysics, says that the observatory is a framework for future projects and infrastructure to be added in. State, federal and local agencies, he says, have already expressed interest in tying their instrumentation into the WEO network. The measurements and results from WEO can then be used by those stakeholder agencies. “That’s one of the exciting areas of WEO,” Brooks says. “It takes the new knowledge generated by students and faculty and ports it through as quickly as possible to people on the ground who use that knowledge to make better decisions.”

For Bowen and the GCSC, which brings together faculty from across campus to study environmental issues, WEO is a fulfillment of the center’s mission. “It’s realizing what GCSC strives to be,” Bowen says. “WEO will help integrate everything we’re doing to advance sustainability in our own backyard.” 

WEO will be led by a committee of six faculty members (including Bowen and Brooks) hailing from the departments of Geology & Geophysics, Atmospheric Sciences, Civil and Environmental Engineering, and the School of Biological Sciences. Beyond that, nearly 40 researchers from 13 different departments and eight colleges already have research or outreach projects associated with WEO.

According to a project summary from GCSC, current facilities to be linked together through WEO include:

  • Distributed hydroclimate, meteorological, biological and hydrological observations in seven catchments spanning the Wasatch Crest through the Great Salt Lake including six closely spaced stations spanning an elevation gradient from the top of Red Butte Creek down through campus and on to the Jordan River
  • Experimental stormwater, landscape, transportation, and architectural design infrastructure on campus
  • Long-term ecological, geological, and snow study sites
  • Seven atmospheric trace gas and climate stations from Hidden Peak (Snowbird) to the Salt Lake Valley floor
  • Light rail-based atmospheric observations distributed across land use and elevational gradients in the Salt Lake Valley (TRAX)
  • Deployable and relocatable high-precision atmospheric and hydrologic observation equipment
  • Co-Located, long-term, and spatially extensive databases from multiple disciplines

All of that equipment requires service, repair and maintenance. So WEO provides for two full-time research technical specialists, Dave Eiriksson and Ryan Bares, to keep the sensors running.

Brooks says the interconnectedness of the WEO sensor systems allows researchers to study the impacts on one environmental system, say, urban development, on others, such as the quality of water in urban streams.

“The idea is that each individual solution we have exists in a broader context,” Brooks says. “We want to be as comprehensive as possible so that the solution to one issue doesn’t then create a new problem down the line that perhaps we didn’t think of.”

Brooks adds that the U is uniquely positioned, with researchers and facilities, to study environmental issues common throughout the West.

“WEO brings those researchers and resources together,” he says, “so instead of addressing these issues piecemeal we have the ability to address them in concert.”

Want to join in?

If you’re considering or conducting environmental research along the Wasatch Front, come to a think tank mixer presented by GCSC on Sept. 26, from 5-7 p.m. at the College of Law, sixth floor, Flynn Faculty Workshop.

Learn more and register here.

 

The Intersection of Greenhouse Gases and Air Quality

By: Nicholas Apodaca, Graduate Assistant, Sustainability Office.

As Utah residents know well, air quality can have a serious effect on our daily lives. Wildfires, inversions, dust, and pollution colliding with the complex geography of the Salt Lake region all contribute to the thick haze that can settle over the valley. However, the exact conditions and effects of these issues are not yet completely understood.

John Lin, professor of atmospheric sciences here at the University of Utah, will shine some light on these regional air quality problems in his lecture on Tuesday, September 11 in 210 ASB as part of the Global Change & Sustainability Center’s annual seminar series. Lin will lay out some of the complex conditions that affect air quality, and show just how interconnected they are to greenhouse gas emissions and climate change across the West.

He’ll explain how air quality can be indicative of many diverse conditions converging.

Of major concern in Lin’s research on Salt Lake City is dust blown off the Great Salt Lake. As the climate warms and water levels lower more frequently, dust is increasingly exposed to the air and carried into the atmosphere. Salt Lake City’s proximity to the lake leaves it particularly susceptible to the ill effects. This lake dust also effects snow, as it settles on the snowpack and causes it to melt faster.

Wildfires also play a big part in introducing particles to the atmosphere. Smoke from across the West can move hundreds of miles in the atmosphere to Utah. As climate change makes fires more frequent and intense, the relationship between global processes and regional air quality becomes more evident.

This relationship is visible in our daily lives.

“When we drive, the stuff that comes out of our tailpipes includes greenhouse gases but also NOx [Nitrogen Oxide] and PM2.5 which cause air quality problems,.” Lin said.

Often the source of local pollution is the source of emissions that drive climate change. Each contributes to a feedback loop that exacerbates their combined effect.

Lin’s research at the U has begun to uncover and understand the sources of these problems. Through two research groups, LAIR and U-ATAQ, Lin has used extensive data from a complex network of air quality monitoring systems throughout the region. The TRAX Air Quality monitoring system installed four years ago has been a major player in this network. The system has allowed Lin and his colleagues to closely monitor the valley’s air in its most densely-populated areas. Working together with city government, this research is directly informing new air quality initiatives in Salt Lake City. Collaborative work with the University of Utah Medical School is also applying this data to public health research.

The possibilities emerging from an understanding of how air quality and climate change intersect may have positive consequences outside of Utah.

“There’s a fair bit of interest from cities around the West who want to reduce emissions,” said Lin. “The cities are at the forefront, and hopefully the scientists can help in some way. What we hope to do is use our research to help assess if, with new measures in place, the reduction in emissions are actually happening.”

Come to Lin’s seminar, ” “The greenhouse gas-air quality nexus: experiences from the Western U.S.” at 4 p.m. in 210 ASB on Tuesday, September 11 to learn more about this cutting-edge research of the intersection of air quality and climate change, and how it affects us here in Salt Lake City and the West.