Sweating the Small Stuff

By Karren Fultz, administrative officer, Sustainability Office. Originally posted on May 29, 2018.

With over 27,000 employees at the university, small changes to our daily office habits can add up to a large collective impact. These can be seen in continual cost-savings and environmental benefits. The Sustainability Office offers ongoing support and customized training to help implement new practices. So, reimagine your office routine through Green Office Certification.

Green Office Certification is a tool that guides staff and faculty as they adopt sustainable choices in the workplace. Using the Green Office Checklist, departments and colleges provide opportunities for everyone to participate in sustainability activities related to purchasing, energy use, transportation and more. After completing the checklist, schedule an appointment with a green-office specialist to verify the level of certification.

“Green Office Certification has helped our office be more aware of our collective carbon footprint,” said Jennifer Browning, office assistant, College of Architecture + Planning. “Maintaining our gold standard has become a group effort with everyone involved. Because of this program, we are always trying to think of new ways to reduce, reuse and recycle here in our office. We are so grateful to the Sustainability Office for introducing us to this campus program.”

Participating departments are recognized in three tiers of achievement: bronze, silver and gold.

Five departments have achieved gold, three have silver and three have bronze. Additionally, 22 departments are working on their certification.

  • Gold: Bennion Center, College of Architecture + Planning Dean’s Office, Office of Sponsored Projects, Second Language Teaching & Research Center, Sustainability Office
  • Silver: City & Metropolitan Planning, Facilities Management Utility Systems & Services, Utah Museum of Fine Arts
  • Bronze: College of Humanities Dean’s Office, Eccles Health Sciences Library, Parks, Recreation & Tourism

The first office at the U to participate in Green Office Certification was the Bennion Center.

“Green Office Certification is about planning ahead and knowing what you really do or do not need,” said Debbie Hair, administrative assistant with the Bennion Center. “It is about remembering to use on/off switches, printing on both sides of paper, and other simple actions that give back to Earth.”

After earning bronze, the Bennion Center didn’t stop there, advancing to gold certification in February 2015. With this achievement, they joined the dean’s office in the College of Architecture + Planning, which was the first campus office to earn gold.

The Sustainability Office also uses Green Office Certification to collect data for the Association for Advancement in Higher Education’s Sustainability Tracking, Assessment & Rating System (STARS). Through this self-reporting system, universities and colleges measure their overall sustainability performance. The U is currently designated STARS Silver and working to achieve STARS Gold by 2020.

Ready to take action? Join the faculty and staff of 33 departments and colleges by registering your department today. Contact Karren Fultz, karren.fultz@utah.edu for more information.

REVOLVING LOAN PAYS LEED GOLD DIVIDENDS

Originally posted in @theU on May 14, 2018

By: Liz Ivkovich, Global Change & Sustainability Center

The building that is home to the College’s Department of Mechanical Engineering has achieved a LEED Gold certification after the building’s latest upgrade – the installation of a solar panel array on the roof. These upgrades were made possible through the support of the university’s Revolving Loan Fund, which provides low interest loans to help reduce carbon emissions on campus.

The architect for the $24-million renovation, Derrick Larm, said the new 34.2-kilowatt solar panel system, which was installed earlier this year and is comprised of four separate panels on the roof, provides an additional 5 percent energy-cost savings per year for the building. The Rio Tinto Kennecott building now is one of seven U buildings on campus with the Gold certification.

The LEED, or Leadership in Energy and Environmental Design, is a certification rating by the U.S. Green Building Council for highly efficient, cost-effective green buildings. The Rio Tinto building at 1495 E. 100 South originally achieved a Silver rating when the renovation of the 65-year-old structure was completed in 2015. The Revolving Loan Fund was able to provide the up-front costs for the rooftop solar energy project, which enabled the project to achieve enough credits to earn LEED Gold Certification.

What began as a 54,000-square-foot building built in the 1950s for Kennecott Utah Copper Corp.’s research offices has now become a 76,000-square-foot U lab space with the latest in energy-saving technology and safety features.

The building now has energy-efficient elevators, a chilled beam system for air conditioning and a heating system that use much less energy, new walls and braces for earthquake stabilization, a horizontal fire shutter above the atrium designed to stop the spread of a fire, and a new pedestrian walkway called “Job’s Crossing” that connects the building to the rest of campus for safer pedestrian traffic.

“It’s a complete renovation, and it’s amazing that we took something that had no insulation and get it to a place where it is performing 40 percent better than a code-compliant building,” Larm said. “The swing in energy efficiency is just enormous.”

All told, these energy upgrades will save the building 32 percent in annual energy costs, he added. The Revolving Loan Fund helped to off-set the cost of making these changes to the building.

The Revolving Loan Fund operates by fronting the extra incremental costs often associated with energy efficiency or renewable energy. Often the initial costs of these on-campus projects—such as solar panels and high efficiency water heaters—can be a barrier for the University, even if the project will save money over its lifetime. After the project is complete, the loan is paid back to the fund through savings accrued in reduced energy costs to the university. In addition, after the loan is paid back (typically 8-15 years), the university benefits from those savings for the remaining life of the equipment (usually 25 years).

“Not only does the university save money and reduce carbon emissions through the fund, but the returns on investment are plowed right back into other projects for decades to come,” said Myron Willson, deputy chief sustainability officer. “The fund is also one of only a few student fee-based revolving loan funds in the country. It is unique on campus in that student fees and donations provide annual funding like an endowment, while returns from previous project investments grow the available pool exponentially. It is the fund that literally keeps on giving.”

BIKING TO THE U: NO SWEAT

Originally posted in @theU on March 26, 2017 by Liz Ivkovich, communications and relationship manager, University of Utah Sustainability Office.

Want to ride to campus like it’s downhill both ways? 

Check out U Bike Electric, an electric bicycle (e-bike) purchase program intended to help more people improve air quality by cutting personal transportation emissions. The program offers U community members the opportunity to purchase a variety of makes and models of e-bikes at discounted prices starting now through May 26, 2018.

With almost fifty percent of Utah’s urban air pollution coming from tailpipe emissions, U Bike Electric is a creative solution to improve air quality and community health. With no emissions, e-bikes offer the U community an easy way to not only get around the U’s hilly terrain, but all across the Wasatch front with the backup power of an electric bike.

“If you have not been on an e-bike, it is time to try one!” said Amy Wildermuth, the university’s chief sustainability officer. “They are great fun and, even better, they will get you where you need to go quickly. We invite everyone to join in to get some exercise and have fun while we clean up Utah’s air.”

To offer the program, the University of Utah Sustainability Office is partnering with local clean energy advocacy group Utah Clean Energy. The U and Utah Clean Energy have pioneered multiple successful community purchasing programs including U Community Solar and U Drive Electric, two nationally recognized programs that spurred local markets and contributed to a more sustainable future. Using the same model as these past programs, U Bike Electric will help consumers find the best option for their commuting needs by offering discounts on various e-bikes during a specified timeframe.

Five local bike shops were chosen through a competitive screening process and will be participating in the program including Bingham Cyclery, Contender Bicycles, Guthrie Bicycle Company, eSpokes Electric Bicycles, Trek Bicycle Salt Lake City Downtown.

Participating community members can sign up for the program at electric.utah.edu. Once registered, participants will receive a discount code to take to participating dealers to purchase the e-bike of their choice.

Discounts for electric bicycles vary by make and model, and range between ten and twenty-five percent off of the manufacturer’s suggested retail price. Selected dealers are certified to maintain electric bikes after purchase, ensuring continued customer support long after purchasing.

“Utah Clean Energy is delighted to once again partner with the University of Utah to help accelerate air quality solutions,” said Kate Bowman, Utah Clean Energy’s project coordinator. “This is an exciting new program to help get more people on electric bikes by harnessing the power of community bulk-purchase and education to make choosing an electric bike affordable and easy.”

Members of the U community, including faculty, staff, students, and alumni, and even those who have attended U events, can take advantage of this great program.

There is an additional program coming to enable interested departments to purchase shared e-bikes for use around campus. More information on that program will be available in May – contact the Sustainability Office if you are interested to learn more.

 

About Sustainability at the University of Utah

The University of Utah is committed to integrating sustainability across all areas of the institution, including academics, operations and administration and to serving as a model for what is possible in sustainability. The Sustainability Office supports sustainability efforts of all kinds and works to better streamline initiatives and collaboration across campus.

About Utah Clean Energy
Utah Clean Energy is Utah’s leading expert public interest organization working to expand renewable energy and energy efficiency in a way that is beneficial not only for Utah’s environment and health, but also our economy and long-term energy security. Utah Clean Energy is committed to creating a future that ensures healthy, thriving communities for all, empowered and sustained by clean energies such as solar, wind and energy efficiency.

Community members are invited to test ride various makes and models during Earth Fest on Wednesday, April 11, 2018, 10 a.m.-2 p.m. at the Marriott Library Plaza. Additional test ride opportunities will be offered throughout Salt Lake City in April and May. For more information on all test ride opportunities, visit electric.utah.edu.

Antifreeze Adaptations

By Bianca Greeff, Graduate Assistant.

The Antarctic snailfish, Paraliparis devriesi, named after Professor Art DeVries from the University of Illinois at Urbana Champaign, lives perhaps 700 m down and has insufficient antifreeze to cope with ice crystals. Courtesy of Peter Wilson.

Reaching temperatures as low as -89°C, Antarctica is the coldest, windiest and driest continent on the planet. The Southern Ocean that surrounds Antarctica doesn’t offer much relief for species. In the winter, the ocean surface freezes solid, doubling the continent’s size. In the summer, temperatures rise just above freezing and melt away some of the sea ice.

Despite water temperatures remaining around -1.5 to -2°C, the Southern Ocean is teeming with life.

Peter Wilson, visiting distinguished professor at the University of South Florida and associate dean at the University of Tasmania Institute for Marine and Antarctic Studies, will provide a general overview of the Southern Ocean and explain how species have adapted to survive in and around Antarctica at the GCSC Seminar Series on Tuesday, March 27, 4-5 p.m. in 210 ASB.

Over the course of millions of years, marine species have adapted to the harsh, cold water in the Southern Ocean.

“A fish from the coast of California would freeze solid like a popsicle if it was placed in the waters around Antarctica,” explained Wilson. “The fishes around Antarctica, and in the Arctic, have evolved to create these wonderfully interesting protein molecules that bind to the ice crystals and stop the crystals from growing.”

One of the species Wilson will discuss is the Antarctic toothfish (Dissostichus mawsoni). The Antarctic toothfish produces antifreeze glycoproteins that allow it to survive in the freezing waters of the Southern Ocean. The glycoprotein comes in a variety of size ranges, and can be found in all body water, not just in the blood. But Wilson suggests it isn’t the protein itself that is interesting. Rather it is the way the proteins bind with ice crystals.

Species with these antifreeze proteins can be classified as either freeze tolerant or freeze avoidant. Freeze tolerant species include those species who can handle a significant amount of freezing. Up to 81 percent of their body water can be frozen solid and these species will still survive, said Wilson.

Don Juan Pond is a small, hypersaline lake in the west end of Wright Valley. With a salinity of over 40%, Don Juan Pond is the saltiest of the Antarctic lakes and remains liquid even at temperatures as low as −50 °C. Courtesy of Peter Wilson.

Freeze avoidant species are the species who prevent the freezing of their bodily water all together. There are a few ways for species to be freeze avoidant. Some might avoid freezing by supercooling—chilling a liquid below freezing temperatures without the liquid becoming solid.

But it isn’t just Antarctic fish that have antifreeze capabilities, insects and mammals have also adapted to the cold temperatures under and on Antarctica. Some insects are able to avoid freezing completely by having gooey hemolymph (the insect equivalent to blood) that slows the formation of ice crystals. In his talk, Wilson will show how a number of species have adapted to the cold.

At the end of his talk, Wilson will indicate some of the ways humans are using this information about antifreeze proteins to transform our own lives. From producing smoother ice-cream to deicing airplanes, Antarctic species might hold the key for future innovation.

To hear more about Antarctic adaptations and Wilson’s journeys through the Pacific to Antarctica attend his GCSC lecture, “Antarctica—Fishes, Adaptations and Dealing with Ice” on Tuesday, March 27 at 4 p.m. in 210 ASB.

 

 

Cover Photo: Ross Island, with Mt Erebus in the background and McMurdo Station seen at front right.  The photograph was taken standing on about 6 feet of sea ice. Courtesy of Peter Wilson.

Re-Imagining Relationships

Bianca Greeff, Graduate Assistant.

Climate change threatens everything about our social organization. But that shouldn’t immobilize us. Instead, Kari Norgaard, associate professor in the Department of Sociology at the University of Oregon, encourages us to view climate change as an opportunity to re-envision our social, political, and economic systems.

Norgaard will show how climate change provides the opportunity to rethink our relationships to the human and other-than-human world at the GCSC Seminar Series on Tuesday, Jan. 9, 4-5 p.m. in 210 ASB.

In her seminar, Norgaard will discuss the phenomenon of socially organized denial. Norgaard suggests that it isn’t the lack of information that leads people to inaction, but rather the emotions that climate change invokes.

“Denial is a form of environmental privilege,” explained Norgaard. “People who have benefited more from the current system find it harder to grapple with the idea of very large system change and experience a lot of guilt, helplessness, fear of future and present.”

Norgaard suggests the normalization of climate change is an avoidance mechanism. While we can make daily changes in our lives to help reduce the amount of carbon in the atmosphere, individuals alone will not be able to slow or stop climate change. There is also an urgent need to rethink many larger aspects of our current systems—like reducing our use of fossil fuels or changing cultural norms of over-consumption.

In her seminar, Norgaard will bridge her work on the social organization of climate denial with her recent work with the Karuk Tribe. The Karuk are an indigenous community in Northern California and are highly mobilized around climate change. The biggest problem they face is the increasing forest fires. Climate change has been producing warmer, dryer conditions in the region—the ideal environment for larger, hotter, and more destructive wildfires. Future mega-fires threaten local ecosystems and cultural practices.

The Karuk have used controlled burns to manage wildfire threats and cultivate traditional plants for generations, but their use of fire has continually been suppressed by management agencies. Recently, wildfire research has begun showing the importance of controlled burns for fire risk management and indigenous practices. Thus, creating an opportunity for cultural and ecological revitalization.

Re-introducing controlled burns is one example of how climate change has created a new possibility for cooperation across worldviews and communities. By incorporating elements of Norgaard’s subtitle—imagination, responsibility, and community—we can start a discourse that inspires action and moves our society to become a more socially and ecologically equitable place.

The “imagination” in Norgaard’s subtitle is defined by the idea of the sociological imagination, which generates awareness between the individual experience and society. It shows how the society we live in shapes what we understand, what we don’t understand, and influences what we think is possible. Norgaard sees that we all have a “responsibility” to be engaged in the world. Feeling overwhelmed, hopeless, or guilty doesn’t mean we should give up or disengage from climate change action. Despite these feelings, we still have a responsibility to act. Closely related is Norgaard’s third term, “community”. No one can tackle climate change on their own. Rather, we need one another. We need to know how to work together and understand each other to create a community of action.

To learn more about the opportunities to re-imagine our relationships to one another and the natural world, attend Norgaard’s seminar, “Climate Change as Strategic Opportunity: Imagination, Responsibility, and Community” on Tuesday, Jan. 9, 4-5 pm in 210 ASB.

 

Cover Photo: “Wildfire” by NPS via flickr. Public Domain Mark 1.0.

 

USING NATURE AS OUR GUIDE: FIVE PLANTS THAT IMPROVE INDOOR AIR QUALITY

Katie Stevens, Sustainable Utah Blog Writing Intern.

Living in Salt Lake City, we are no strangers to air pollution and its harmful effects.  Breathing in toxic air can cause a range of health concerns including increased asthmatic symptoms, bronchitis, chronic obstructive pulmonary disease, and more.

It is no surprise that we often retreat into our homes to catch a breath of fresh air; however, sometimes our indoor air quality could be improved. Common indoor air pollutants include benzene, formaldehyde, trichloroethylene, xylene, and ammonia. There are certain plants that can combat these indoor air pollutants, according to a study done by NASA.

Here are five plants that can improve your indoor air quality: 

  1. FLORIST’S CHRYSANTHEMUM (Chrysanthemum morifolium)
  • Helps to rid the air of: Trichloroethylene, formaldehyde, benzene, xylene, and ammonia.
  • Care: Keep the plant in cooler temperatures and keep the soil moist at all times. Requires bright light.
  • Toxic? Chrysanthemum leaves are toxic so keep this in a safe spot away from any furry friends and youngsters.
  1. PEACE LILY (Spathiphyllum ‘Mauna Loa’)
  • Helps rid the air of: Trichloroethylene, formaldehyde, benzene, xylene, and ammonia.
  • Care: Average room temperature is good for this plant. Keep the soil evenly moist and be sure to have a pot with a drainage hole. Bright light is recommended, but not direct sunlight.
  • Toxic? Yes
  1. ENGLISH IVY (Hedera helix)
  • Helps rid the air of: Trichloroethylene, formaldehyde, xylene, and benzene.
  • Care: Keep under bright light, preferably fluorescent. Soil should be kept moist spring through fall and a bit drier in winter. Ivy likes cool to average room temperatures.
  • Toxic? English Ivy leaves are toxic if eaten and can irritate the skin; it is always a good idea to wear gloves while handling this plant.
  1. BARBERTON DAISY (Gerbera jamesonii)
  • Helps rid the air of: Trichloroethylene, formaldehyde, and xylene.
  • Care: This plant requires bright light to full sun and thorough watering. Prefers cool to average temperatures.
  • Toxic? Non-toxic.
  1. BROADLEAF LADY PALM (Rhapis excelsa)
  • Helps rid the air of: Formaldehyde, xylene, and ammonia.
  • Care: Keep this plant in bright, but indirect light. Soil should be kept evenly moist in the spring and summer and should be dried out between watering in the winter.
  • Toxic? Non-toxic.

I invite you to create your indoor air sanctuary with these plants and test out your green thumb this winter!

 

Cover Photo Via Pixabay CC0

 

curating global ecology through big data

Bianca Greeff, Graduate Assistant.

Ecologists seek to answer the big questions about how the world is changing, and how species and ecosystems are responding to those changes. To answer these questions, a new network of analysis is needed. Community-curated data sources can provide new insight on how systems are have changed in the past and how they are changing now.

Jack Williams, professor of Geography at the University of Wisconsin-Madison, will show how two community curated data sources are bringing reliable, big data to bear on the challenges of a changing world at the GCSC Seminar Series on Tuesday, Nov. 28, 4-5 p.m. in 210 ASB.

Jack Williams, used with permission.

According to Williams, four V’s (volume, variety, velocity, and veracity) characterize ecological big data. Volume refers to the size of data, variety is the heterogeneity – diverse nature – of data types and measurements, velocity is the rate data needs to be generated or analyzed at, and veracity is the potential uncertainties.

Community-curated data sources have been developed to enable global-scale science. These data networks are also changing the way data is analyzed.

“The standard has been to run ecosystem models and analyze data somewhat independently of each other,” Williams said. “But now we have the opportunity to do more simulations where the data doesn’t constrain the simulations and improve the parameterization and forecast.”

Multiple groups have begun building databases that bring the data and paleoecological records from multiple networks to larger scales. These data sets can be applied to testing and improving the predictability of ecosystem models.

Williams will structure his talk around two different data networks—Neotoma and PalEON. Neotoma gathers large amounts of records from around the world and assembles it into one common resource that is publically available. PalEON is an example of one type of research that can be done with this kind of global platform for ecological and paleoecological research.

“Neotoma and PalEON are part of a broader set of efforts to gather many different kinds of ecological data into extended observational networks,” Williams explained. “We can now look at ecological dynamics at long timescales and at large spatial scales.”

Williams studies species’ responses to climate change. By using the last 2,000 years as a model, he can look at how species have migrated or changed in past climate. His work with PalEON is interested in using ecosystem models to forecast and predict species responses to climate change at decadal and centennial time scales.

“An interesting initial finding is that, as a result of climate change and human land use over the last century, the climatic niches of trees have changed,” explained Williams. “A lot of our predictive models use modern climates and modern tree species distribution as the basis of our predictions of forest responses to current and future climate change. Seeing how niches have changed suggests there is perhaps there is some disequilibrium with current climate change.”

To learn more about ecological big data, attend William’s seminar, “Achieving global ecology via dispersed community-curated data resources: Neotoma and PalEON” on Tuesday, Nov. 28, 4-5 pm in 210 ASB.

 

Cover Photo by geralt via pixabay. CC0.

Intentional Change

Bianca Greeff, Graduate Assistant.

Designers are agents of change. They research how our everyday actions and behaviors are conceived, planned, and acted on. By making these intangible aspects of society tangible, designers have the ability to communicate about or change these societal features. In the past, design has been leveraged as a way to create social change. But, these attempts have not always articulated ways to catalyze change.

Transition Design is a nascent idea that acknowledges we are living in transitional times, and recognizes the need to change at all levels of society.

Dr. Terry Irwin, Director of the Carnegie Mellon University School of Design will explain how Transition Design can address the wicked problems of the 21st century at the GCSC Seminar Series on Tuesday, Nov. 7, 4-5 p.m. in 210 ASB.

“Transition Design is a new area of design practice, study, and research focused on systems-level change,” Irwin explained. “It addresses the need for entire societies to transition towards a sustainable future.”

Transitioning into sustainable futures will require the development of new tools and methods that can be used to create societal change. By understanding the interconnectedness of social, economic, political, and natural systems, Transition Design confronts multifaceted problems from different levels and different scales.

“Instead of creating one-off solutions, we are advocating for a systems approach where you are involved in the process of creating solutions over a very long period of time in ways that connects projects, but also connects to future visions of where you want to go,” said Irwin.

Transition Design is a framework that combines a range of practices and approaches from different disciplines to create a new way of addressing problems in a specific location. In other words, Transition Design advocates for creating communities that are in tune with their natural and social systems.

Transitioning to a sustainable future will require change at all levels of society. Not only are politicians, legislators, activists, academics, and other professionals needed to design change, Irwin explains how all stakeholders need a seat at the table.

“The approach we are developing calls for stakeholder engagement and co-design with stakeholders,” said Irwin. “We define stakeholders as anybody that is being affected by the problem.”

Transition Design provides the framework that gets people involved and working together. It pulls from multiple theories across several disciplines. Transition Design also embodies ideas and concepts from non-profit and community sectors. Transition Design empowers and educates a new group of designers who work together to develop solutions to the wicked problems of our time.

“Design is not something that only designers do,’ Irwin explained. “Societal transitions need to be intentional not accidental. The minute you bring intentionality into it, it becomes design. In that way, we are all designing all the time.”

To hear more about Transition Design, attend Irwin’s seminar, “Designing for Systems-Level Change” on Tuesday, Nov. 7, 4-5 pm in 210 ASB.

TAKING THE LEED

Origninally posted in @theU on Oct. 23, 2017.

By Shawn Wood, communications specialist, University Marketing & Communications

The University of Utah announces its first Athletics building to be LEED Gold certified. The Jon M. and Karen Huntsman Basketball Facility, home to both men’s and women’s basketball, is officially a leader in sustainable design and energy efficiency. This is the eighth building on campus to be certified Gold or higher, and represents a commitment to a sustainable future through design.

Leadership in Energy and Environmental Design (LEED) is a building rating system created by the United States Green Building Council to evaluate quality and achievement based on: sustainable design; green practices during construction; and environmental performance over a year after construction is complete.

“We are thrilled that Athletics shares our vision to create a more sustainable campus,” said Deputy Chief Sustainability Officer Myron Willson. “They understand that our environments not only impact the ecosystems around us, but also the health and wellness of the student athletes and staff that occupy the facility every day.”

Sustainable building materials

The 102,000-square-foot facility was manufactured using over 23 percent of recycled materials and resources strategically selected from the Utah region to support local businesses and to reduce the environmental impacts associated with transportation. Over 12.5 percent of the total building materials include products that were manufactured and extracted within 500 miles of the site. During construction, the project diverted nearly 85 percent of the on-site generated construction waste away from landfills.

Eco-friendly site design

The design implements a stormwater management plan that results in a 25 percent decrease in the volume of stormwater runoff from intense rain events. In addition, the hardscape and roof surfaces, including a rooftop terrace and garden, which offers a 360-degree view of the Wasatch and Oquirrh Mountains, the university campus, downtown Salt Lake City and the Great Salt Lake, were designed to mitigate urban heat island — heat buildup around the facility — with lighter materials to in order to minimize the impacts of the reflected sun on surrounding wildlife habitats. The training facility is near U shuttle stops and UTA bus and TRAX routes. It also features on-site bicycle storage conveniently located near the campus bicycle masterplan’s desired routes.

Energy efficiency

The practice facility exceeds the LEED baseline energy performance rating by 38 percent thanks to numerous strategies to make the building more efficient. For example, all interior and exterior light fixtures are LED’s, the HVAC systems, building insulation and windows were selected to minimize energy waste. Exterior fixtures were positioned to minimize light pollution, improve nighttime visibility, and reduce impacts on surrounding environments. An Indoor Air Quality (IAQ) standard was also set so a system could monitor outdoor air delivery, increase ventilation, and enhance thermal comfort of occupants.

The U is also a proud member of the Green Sports Alliance. As a member, U Athletics programs commit to energy-efficient and sustainable practices for new buildings; prevent recyclable items from entering landfills after games; and other sustainable improvements. The U was the first in the state, either collegiate or professional, to join the alliance.

Project designer Jeremy Krug, senior associate at Populous, also worked on the Sorenson High Performance Center, a building adjacent to the basketball training facility. Together these buildings, connected to the Health, Physical Education and Recreation (HPER) Complex, serve 17 of the U’s sports programs and accommodate the needs of each program while serving as a model for what is possible in sustainable design.

“The Jon M. and Karen Basketball Facility was designed to integrate the University’s mission of sustainability as a core principle. The whole design team is honored to have worked with this great University to deliver a facility that aligns with those initiatives. It’s arguably one of the most high-impact facilities in the Pac-12. The building embodies athletic and academic excellence, and can now proudly add sustainability to that list,” said Krug.

CLEAN ENERGY FOR ALL

Originally posted in @theU on Oct. 10, 2017

By Liz Ivkovich, University of Utah Sustainability Office

Medical equipment that helps treat and cure hospital patients, big data computer servers critical to research, hundreds of classrooms lit and climate-controlled – carrying out the mission of University of Utah requires a lot of electricity.

Soon, 50 percent of that electricity will come from carbon-free solar and geothermal energy sources, reducing the university’s total carbon emissions by 25 percent. This means that the U will have the largest long-term green power contract of any U.S. university. With this project, the University of Utah rises to the top of universities in the U.S. Environmental Protection Agency’s list of Green Power Partnership Long-Term Contracts.

In 2008, the university joined the American College and University Presidents’ Climate Commitment, dedicating the campus to carbon neutrality by 2050. This is an aggressive goal that requires a multi-layered strategy, including this off-site power purchasing agreement, as well as energy efficiency measures and on-campus energy.

The agreement between the university, Cyrq Energy, a Utah company based in Salt Lake City, and Berkshire Hathaway Energy Renewables, will provide 20 megawatts of geothermal energy and 10 megawatts of solar energy to the university for the next 25 years.

“This project connects the university to a diverse array of energy resources that are important to the economic health of our state,” said U President David W. Pershing. “Both our Energy and Geoscience Institute and our Department of Geology and Geophysics are known for their work on geothermal resources. We are pleased to be part of a project that so closely aligns with our research strengths and allows the university to take a dramatic step forward on its climate commitment and toward improving air quality.”

The project began last summer when, as a result of partners in the Energy and Geoscience Institute, the university became aware of geothermal projects that were coming online. Geothermal power plants access energy from the earth through drilling water or steam wells to provide a steady resource with less fluctuation in energy production than an intermittent resource like solar or wind.

The university then engaged in a series of technical reviews of renewable energy options that might work for the university’s needs. Following these reviews, the planning team drafted a request for proposals calling for 20 megawatts of geothermal energy and up to 10 megawatts of complementary solar. The final proposal accepted was a joint proposal from Cyrq and Berkshire Hathaway Energy.

“Cyrq is honored to partner with Berkshire Hathaway Energy, Rocky Mountain Power and the U on this exceptional project, and we look forward to supporting the university’s renewable energy goals,” said Nick Goodman, Cyrq CEO.

In order to be finalized, the university must enter into an agreement with Rocky Mountain Power under Schedule 32 for the transmission of the renewable power along Rocky Mountain Power’s network. All agreements are subject to review by the Public Service Commission.

With this contract and the power generated by existing on-campus solar PV projects, the university’s annual green power purchase rises to 173,328,700 kilowatt hours (kWh). This is the largest long-term contract kWh for any university on the EPA’s list of Green Power Partnership Long-Term Contracts.

“This is a big move forward for the University of Utah, and we have been very fortunate to have the opportunity to work with many terrific partners, including the Sustainability and Energy Management Team in Facilities.,” Wildermuth said. “Their hard work to improve our energy efficiency and systems is what made an arrangement like this possible. But we are not done. There is still more we can do to reduce our energy use, our air emissions and our carbon footprint.”

The university is committed to a multi-layered carbon-neutrality strategy, including energy efficiency measures and on-site energy creation like rooftop solar and solar parking canopies. A study is underway to determine what additional percentage of the university’s energy demand could be produced on campus and where those projects might be located. In addition to working on university emissions, the U has also helped to spur the local renewable energy market through U Community Solar, an innovative group purchasing program.

Carbon-neutrality by 2050? We’re one big step closer.